
School of Physics and Astronomy

Junior Honours Thermodynamics GJA 2019-2020

Lecture TOPIC 8 (Finn: 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.8, 6.9)

Synopsis: The thermodynamic potentials: internal energy U , enthalpy H, Helmholtz function
F and the Gibbs function G. Maxwell’s relations. dG = 0 as the condition for equilibrium.

Equilibrium and the Thermodynamic Potentials

The Second Law tells us that entropy increases in the universe as a whole. So it must increase
in any isolated system. But generally, we want to know the equilibrium behaviour of a material
system, for specified surroundings.

We can define state functions, U, H, F and G which are useful for determining thermodynamic
equilibrium under different external conditions, and the maximum work that can be extracted
from a system when those boundary conditions are changed. They all involve state functions
and are independent of the process applied to the system.

potential differential Maxwell relation natural variables

internal energy U dU = TdS − PdV
(
∂T
∂V

)
S

= −
(
∂P
∂S

)
V

S, V

enthalpy H

H , U + PV dH = TdS + V dP
(
∂T
∂P

)
S

=
(
∂V
∂S

)
P

S, P

Helmholtz free energy F

F , U − TS dF = −PdV − SdT
(
∂P
∂T

)
V

=
(
∂S
∂V

)
T

T, V

the Gibbs free energy G

G , H − TS dG = V dP − SdT
(
∂V
∂T

)
P

= −
(
∂S
∂P

)
T

T, P

Maxwell Relations

The four Maxwell’s relations are general thermodynamic relations involving P , V , T and S which
establish links between different measurable properties of substances; specific heat capacities,
compressibilities etc. They are most conveniently derived from the requirement that the second
derivatives of U,H,F,G with respect to their natural variables do not depend on the order of
differentiation; this is required since the potentials are state functions.

e.g. dU = TdS -PdV implies that: ∂2U/∂Vs∂Sv = (∂T/∂V )s = ∂2U/∂Sv∂Vs = −(∂P/∂S)v
To recall the Maxwell relations from their derivation it can be seen that:

1. The independent (natural) variables of the potential from which each Maxwell relation is
derived appear in the denominators of the relation.

2. Cross multiplication of numerators and denominators yields products of pairs of conjugate
variables, ∂S ∂T and ∂P ∂V .

3. The sign can be deduced by recourse to the appropriate potential function.
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Derivations based on Internal Energy U

The central equation of thermodynamics dU = TdS−PdV suggests putting U = U(S, V ). Then
dU =

(
∂U
∂S

)
V
dS +

(
∂U
∂V

)
S
dV , equate coefficients to get:

T =

(
∂U

∂S

)
V

and − P =

(
∂U

∂V

)
S

For isochoric process (constant volume) & no other work is done, for ANY changes:

∆U = Q ∴ dU |V = TdS|V , (no work, REVERSIBLE process)

Heat capacity: For reversible, isochoric (constant volume) heat flows:
CV , d̄ QV

dT = dUV
dT =

(
∂U
∂T

)
V

and so CV = T
(
∂S
∂T

)
V

From partial derivatives for T and P :
(
∂T
∂V

)
S

[
= ∂2U

∂V ∂S = ∂2U
∂S∂V

]
= −

(
∂P
∂S

)
V

U is minimised for system at equilibrium with constant V and S boundaries.

Derivations based on Enthalpy H = U + PV

dH = dU +PdV +V dP = TdS+V dP suggests putting H = H(S, P ). Then dH =
(
∂H
∂S

)
P
dS+(

∂H
∂P

)
S
dP , equate coefficients to get:

T =

(
∂H

∂S

)
P

and V =

(
∂H

∂P

)
S

For isobaric process (constant pressure) if no work done other than mechanical:

∆H = Q (Pf = Pi = P0, no W except PdV)

∴ dH|P = T dS|P (|P , no W except PV, REV)

Heat capacity For reversible, isobaric (constant pressure) heat flows:
CP , d̄ QP

dT = dHP
dT =

(
∂H
∂T

)
P

and so CP = T dSP
dT = T

(
∂S
∂T

)
P

From partial derivatives for T and V:
(
∂T
∂P

)
S

[
= ∂2H

∂P∂S = ∂2H
∂S∂P

]
=
(
∂V
∂S

)
P

,

H is minimised for system at equilibrium with constant P and S boundaries.

Derivations based on Helmholtz free energy F = U − TS

dF = dU−TdS−SdT = TdS−PdV −TdS−SdT = −PdV −SdT suggests putting F = F (V, T ).
Then dF =

(
∂F
∂V

)
T
dV +

(
∂F
∂T

)
V
dT , equate coefficients to get:

−P =

(
∂F

∂V

)
T

and − S =

(
∂F

∂T

)
V

From partial derivatives for −P and −S:
(
∂P
∂T

)
V

=
(
∂S
∂V

)
T

,
F is minimised for system at equilibrium with constant V and T boundaries.

Derivations based on the Gibbs free energy G = H − TS

dG = dH −TdS−SdT = dU +PdV +V dP −TdS−SdT = V dP −SdT suggests G = G(P, T ).
Then dG =

(
∂G
∂P

)
T
dP +

(
∂G
∂T

)
P
dT , equate coefficients to get:

V =

(
∂G

∂P

)
T

and − S =

(
∂G

∂T

)
P

From partial derivatives for V and −S.
(
∂V
∂T

)
P

= −
(
∂S
∂P

)
T

,
G is minimised for system at equilibrium with constant P and T boundaries.

2



Equilibrium condition for System in contact with T & P reservoirs: dG = 0

Many systems are constrained to operate or evolve
when they are open to the atmosphere, and so are
subject to (very nearly) constant pressure and tem-
perature at their boundaries.
Gibbs free energy has special status because two
parts of a system with no fixed boundary will come
into mechanical and thermal equilibrium with con-
stant P and T throughout.
Consider a process in a system is initially at the tem-
perature (T0) and pressure (P0) of the heat and pres-
sure reservoir.

adiabatic wall

reservoir T0P0

TPQ

system

free diathermal
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If the system evolves, possibly by chemical reaction, its temperature and pressure will, in
general, both vary with time. If the system cools, heat Q (assumed measurable) will flow into
it from the reservoir. The entropy of the reservoir will change by ∆S0 = −Q/T0. If the system
expands, it will do work P0∆V on the reservoir.

Suppose that the system eventually returns to a new equilibrium state with temperature T0

and pressure P0, but with its composition somehow changed (possibly its chemical composition).
Then, in general, the values of some of its state functions will have changed, possibly the Gibbs
free energy and the entropy, amongst others. The change in value of the Gibbs free energy can
be found using the principle of increasing entropy, and the 1st law of thermodynamics.

In what follows, symbols with the subscript “0” denote properties of the reservoir and no
subscript is used for properties of the system. We examine the ensemble of the system and a
sufficiently large volume of reservoir such that the ensemble can be considered to be thermally
isolated from the ‘rest of the universe’.

entropy increase First Law
∆S + ∆S0 ≥ 0 ∆U = Q− P0∆V

→ ∆S + −Q
T0

≥ 0 Q = ∆U + P0∆V

→ T0∆S −Q ≥ 0
→ Q− T0∆S ≤ 0

Combining the above,
∆U + P0∆V − T0∆S ≤ 0

⇒ ∆U + P0(Vf − Vi)− T0(Sf − Si) ≤ 0

Since P0 = Pi = Pf and T0 = Ti = Tf

∆U + (PfVf − PiVi)− (TfSf − TiSi) ≤ 0

⇒ ∆U + ∆(PV )−∆(TS) ≤ 0

⇒ ∆(U + PV − TS) ≤ 0

⇒ ∆G ≤ 0

A system in thermal and mechanical contact with a heat and pressure reservoir is
in equilibrium when the Gibbs free energy is a minimum

This means that spontaneous changes in a system in contact with a heat and pressure reservoir
are accompanied by a decrease in the value of its Gibbs free energy. Further if any infinitesimal
changes are somehow induced in a system already in an equilibrium state, the changes are
reversible and dG = 0.
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Equilibrium condition for different system boundaries

From the boxed equations below, we can identify the natural variables for each potential.

U dU = TdS − PdV ⇒ U(S, V )

H = U + PV ⇒ dH = TdS + V dP ⇒ H(S, P )

F = U − TS ⇒ dF = −SdT − PdV ⇒ F (T, V )

G = U − TS + PV ⇒ dG = −SdT + V dP ⇒ G(T, P )

Be aware that if there are additional thermodynamic variables and conjugate forces (i.e.
non-PdV work), more potentials can be defined eg. for dU = TdS − PdV + xdX it may be
useful to define a new potential G′(T, P, x) = U − TS + PV − xX

If the boundary constraints fix the natural variables for a particular potential, that potential
is at an extremum at equilibrium with respect to changes of all internal degrees of freedom
(eg fixing P = P0 & T = T0 requires dG = 0 at equilm for all possible internal changes of
composition). For U,H, F,G the extremum is a minimum. For S(U, V ) the extremum is a
maximum. The proof in each case follows the same line of argument as was given on the
previous page for G.

There are an infinite number of state variables

Any partial derivative of a state variable with respect to another state variable, while holding
a third constant, (∂X∂Y )Z is itself a state variable. Any product of state variables is a state
variable. Adding together two state variables with the same dimensions produces a state variable.
An infinite number, but all of them can be derived from the equation of state for any of the
thermodynamic potentials for the substance.

Example derivation of a Maxwell relation

Suppose we need to re-express
(

∂S
∂P

)
T

in terms of other derivatives, because we don’t know

about S. A Maxwell relation might help.

1. The relevant independent variables can be identified as P, T . Since the Maxwell relations
just reverse the order of differentiation, the above derivative can be related to a partial
derivative with respect to T with P held constant. We could also work with the reciprocal(
∂P
∂S

)
T

and relate this to a partial derivative with respect to T with S held constant.

2. The cross multiplication ‘rule’ tells us that the derivative it is related to is
(
∂V
∂T

)
P

. At

this stage it should be apparent whether the application of a Maxwell relation is a useful
step in solving a particular problem or not.

3. We know that G has natural variables (T, P ) therefore look at dG = −SdT + V dP :

−
( ∂S
∂P

)
T

=
( ∂2G

∂P∂T

)
=
( ∂2G

∂T∂P

)
=
(∂V
∂T

)
P

Thus a negative sign is required in this case:
(

∂S
∂P

)
T

= −
(
∂V
∂T

)
P

.

This Maxwell relation relates a derivative that does not correspond to a common type
of measurement to the isobaric thermal expansivity, β = (∂ln(V )/∂T )P , which is easily
measured or can be written down directly from the equation of state if the latter is known.
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