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Lecture TOPIC 9 (Finn: 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8)
Synopsis: Relationship between state variables, including applications of Maxwell’s rela-

tions. Heat capacities and entropy. Interdependence of thermal and mechanical properties:

TdS equations

Entropy is hard to measure, so we would like equations which relate it to measurable quantities,
e.g. to find S(T,V):

TdS = T

(
∂S

∂T

)
V

dT + T

(
∂S

∂V

)
T

dV

From Central Equation cV =
(
∂U
∂U

)
V

= T
(
∂S
∂T

)
V

and use the Maxwell relation
(
∂S
∂V

)
T

=
(
∂P
∂T

)
V

Which gives a relationship between entropy and more easily measured quantities.

TdS = CvdT + T

(
∂P

∂T

)
V

dV

A similar derivation gives : TdS = CPdT − T
(
∂V

∂T

)
P

dP

How to find the difference in heat capacities, CP − CV

The first step is to decide what should be chosen as independent variables. Heat capacity is
defined in terms of easily measurable properties: CV = d̄QV /dT ; CP = d̄QP /dT .

The central equation gives equivalent expressions in terms of state variables

CV = (∂U/∂T )V = T (∂S/∂T )V

CP = (∂H/∂T )p = T (∂S/∂T )p

These expressions emphasise the relationship between entropy and heat capacity: they even
have the same units! Measuring heat capacity enables us to infer changes in entropy.

To relate Cv to CP consider S = S(T, V ), and its differential by T at constant P .

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV =⇒
(
∂S

∂T

)
P

=

(
∂S

∂T

)
V

(
∂T

∂T

)
P

+

(
∂S

∂V

)
T

(
∂V

∂T

)
P

Now we have a general expression for CP involving CV

CP = T

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

= CV + TV β

(
∂S

∂V

)
T

Where one partial derivative was identified as the volume thermal expansivity β:

β =
1

V

(
∂V

∂T

)
P
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The partial derivative (∂S/∂V )T can be re-expressed with the help of a Maxwell relation to
eliminate S. The final result in terms of standard measurable properties is then obtained with
the cyclical rule:(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

= −
(
∂P

∂V

)
T

(
∂V

∂T

)
P

==
1

V
KV β = Kβ

with K = −V
(
∂P
∂V

)
T

the isothermal bulk modulus (a mechanical parameter) and β the
thermal expansion coefficient again. Inserting the above result:

CP − CV = TV β2K = TV β2/κ

where κ = 1/K is the isothermal compressibility. Because K is positive for all substances (as
required for mechanical stability) it is always true that CP > CV .

The dependence of CV on volume V , and of CP on pressure P

Rhe internal energy U and CV = dU/dT of an Ideal Gas are functions of temperature T only,
but this is not generally true. A real material’s capability of absorbing heat changes with its

density, due to the stretching of interatomic bonds, described by a material property
(
∂CV
∂V

)
T

.

Thermodynamics can be used to relate
(
∂CV
∂V

)
T

directly to any equation of state:(
∂CV

∂V

)
T

= T

(
∂

∂V

(
∂S

∂T

)
V

)
T

= T

(
∂

∂T

(
∂S

∂V

)
T

)
V

= T

(
∂

∂T

(
∂P

∂T

)
V

)
V

= T

(
∂2P

∂T 2

)
V

Where a Maxwell relation was used in the penultimate equality. You can easily check that for
an ideal gas or even the van der Waals fluid, this is zero. An analogous analysis for CP yields(

∂CP

∂P

)
T

= −T
(
∂2V

∂T 2

)
P

The Force-energy relation

Taking the derivative of the the central equation of thermodynamics, dU = TdS − PdV , with
respect to dV and replacing the derivative of the entropy using a Maxwell relation gives:(

∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P = T

(
∂P

∂T

)
V

− P = TβKT − P

For a body in motion, if we write V as length (x) times area (A), and P as force over area.

F = P ×A = −
(
∂U

∂x

)
T

+ATβKT

“Force = -gradient of potential energy + something else”
Note if we consider an isentropic process rather than an isothermal one, we will recover the

normal laws of dynamics. Newton’s Laws only hold for objects unable to exchange heat with
their surroundings. Similarly, the force is equal to the differential of the appropriate Free energy
for the boundary condition.

Energy stored as pressure

A similar analysis can be made to re-express the pressure derivative of the internal energy:(
∂U

∂P

)
T

= −T
(
∂V

∂T

)
P

− P
(
∂V

∂P

)
T

= −TV β + PV/KT

The various differentials can be related to physical properties, e.g. thermal expansivity
β = 1

V

(
∂V
∂T

)
P

, Bulk Modulus K = −V
(
∂P
∂V

)
T

and Gay-Lussac coefficient
(
∂P
∂T

)
V

= βKT
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Relating thermal and mechanical properties

It can also be shown using Maxwell relations (see tutorial examples) that

CP

CV
=
κT
κS

where κT and κS are, respectively, the isothermal and adiabatic compressibilities:

κT = − 1

V

(
∂V

∂P

)
T

and κS = − 1

V

(
∂V

∂P

)
S

This provides another useful link between thermal and mechanical properties of materials, en-
abling us to measure one thing and calculate an apparently unrelated one.

The entropy of an ideal gas, again

For entropy S = S(T, V ),

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV = CV
dT

T
+

(
∂P

∂T

)
V

dV

which for 1 mole becomes ds = cv
dT
T + βKdv

The above equation applies to any fluid. For an Ideal gas βK = R/v and cv is a constant.
Integration from a reference state (0) then gives s = cv lnT/T0 +R ln v/v0 + s0.

Starting with S = S(T, P ) a parallel set of steps yields s = cP lnT/T0 −R lnP/P0 + s0.
In very general terms, an increase in volume means a positive ln(v/v0) implying an increase

in the number of ways of arranging particles [because the molecules have more space to occupy].
This gives an increase in the value of entropy. An increase in P (proportional to density) means
positive lnP/P0 meaning that the gas is constrained to occupy a smaller volume, hence the
minus sign in −R lnP/P0. In either case, note that as T → 0 it seems that S → −∞. This is a
sign that the classical notions behind the ideal gas are breaking down at low T.

Availability - what is minimised as a system goes to equilibrium?

Consider a system out of equilibrium with surroundings at (T0, P0). Heat Q flows into the system
until it reaches equilibrium, and in principle that heat flow can be used to generate work.

The second-law tells us that total entropy increases in a process:

∆Ssys + ∆Ssurr ≥ 0 (1)

∆S − Q

T0
≥ 0 because ∆Ssurr =

1

T0

∫
d̄Q (2)

The reservoir is assumed to be much larger than the system, so we take (T0, P0) as constants.
In our derivation of the increasing entropy principle EQN 2 was derived directly from the

Clausius inequality. EQN 1 can be obtained by considering the surroundings and system as a
combined system thermally isolated from the rest of the universe or alternatively from EQN 2
assuming that a reservoir is always considered to be internally in equilibrium.

Using the first law applied to the system is ∆U = Q− P0∆V , to eliminate Q:

∆U + P0∆V − T0∆S ≤ 0 (3)

We can define a function called the Availability, A = U−T0S+P0V . Availability depends on both
the system and surroundings A(S, V, P0, T0), unlike the thermodynamic potentials U,H, F,G,
which depend only on the system variables. Availability is not a state variable.
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Spontaneous changes in availability as a system equilibrates are always negative (see EQN 3).

∆A = ∆U − T0∆S + P0∆V ≤ 0 (4)

The availability will therefore be at a minimum at equilibrium where no further spontaneous
changes can occur. The general condition that A is minimised is a unifying principle which
simplifies depending on the boundary conditions of the system.

If T = T0 & P = P0 A = U − TS + PV ∴ G is a minimum
If T = T0 & V = const A = U − TS + const ∴ F is a minimum

If S is const. & P = P0 A = U + const+ PV ∴ H is a minimum
If S is const. & V = const A = U + const ∴ U is a minimum
If U is const. & V = const A = const− T0S ∴ S is a maximum

How much useful Work can we get from bringing a finite system to equilibrium?

In the previous section the system did work in expanding against the environment P0∆V . This
cannot be used for another purpose, but in general, the “system” could incorporate e.g. a
heat engine producing additional useful work. In that case work done by the system is: W =
W useful + P0∆V . And the First Law becomes

∆U = Q−W = Q−W useful − P0∆V (5)

where some heat engine is part of the system, so Q is now only the heat transported from the
surroundings to the system. Combining (EQN 2 and 5) gives

∆U + P0∆V − T0∆S +W useful = W useful + ∆A ≤ 0

So the maximum useful work that can be obtained is W useful
max = −∆A. This is achieved when

all the changes are carried out reversibly. This explains why A is called the availability.
This is also clearly seen if we look at a small differential change of A:

dWuseful ≤ −dA = −dU + T0dS − P0dV

= (T0 − T )dS + (P − P0)dV
(6)

In principle the pressure difference can be used to do
mechanical work as the piston moves. For a spontaneous
process both (P − P0)dV and (T0 − T )dS are positive: a
system will expand if its pressure reduces, and increased
temperature always increases entropy.

If the changes in dV and dS are reversible the work
done by the piston plus the work done by the engine, is
the maximum that can be extracted from a change (see
figure). The maximum useful work is simply −∆A. We
do not have to worry about details of the piston motion
or heat engine: we can evaluate −∆A however we choose.
For example, Supposing the system was one mole of cold
ideal gas, initially at (Ti, Pi). ∆U = cv(T0−Ti) and ∆V =
R(T0/P0 − Ti/Pi). For ∆S, we can use the expression
above (being careful with signs) so that in total

∆A = cv(T0 − Ti)− T0[cP lnT0/Ti −R lnP0/Pi] + P0R(T0/P0 − Ti/Pi)

Notice each term may be positive or negative, depending on whether the system is initially
hotter/colder or higher/lower pressure than the surroundings. Only the total is unambiguously
negative. It is always possible to do useful work before reaching equilibrium, which you can
prove using the fun function f(y) = ln(y) + 1− y which is ALWAYS negative for y > 0.
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