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Synopsis: Positive Compressibility and Heat Capacity. The Gibbs-Helmholtz and Clausius-Clapeyron
equations. The vaporization curve. First order phase changes.

Thermodynamically Impossible Properties

Consider a homogeneous sample at equilibrium, thermally isolated, fixed volume split into two sections
VA and VB by a light piston. Imagine that section A spontaneously expands isentropically by ∆V (so B
contracts by ∆V ). This would move the piston, generating work - violating the Kelvin statement of the
Second Law.

To see how this works out analytically, consider the total internal energy U =UA +UB.
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Using the result from the Central Equation (dU = T dS−PdV ) that
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V and (∆V )2 are obviously positive. U is minimised at equilibrium, so dU > 0. Therefore KP, the
adiabatic bulk modulus must be positive. An exactly similar argument can be applied to splitting into two
sections of slightly different entropy, dS but fixed volume. This leads to Cv > 0. A negative heat capacity
would imply heat would spontaeous flowing from cold to hot, in violation of the Clausius statements.
Using H in place of U gives Cp > 0, and using F gives positive isothermal bulk modulus (KT ).

Note this works for conjugate variables: there is no similar argument for thermal expansions. 1

Elastic constants and Poisson Ratio

Bulk modulus is just one elastic constant, relating pressure to volume In a homogenous medium, the
shear modulus is another, with conjugate variables shear stress and shear strain. In a crystal, there are
potentially 21 different elastic moduli. These can be represented using the full elastic tensor relating
stress to strain.

Uelastic = σi jekl = ∑
i jkl

1
2

Ci jklei jekl

The tensor approach (81 components!) overcomplicates the situation. Universal symmetry (i.e. energy
is unchanged by rotation and translation) requires that Ci jkl = Ckli j = C jikl = Ci jlk. For almost all real
materials there are additional symmetries simplifying things further. For a homogeneous fluid only bulk
and shear modulus remain, and shear modulus is zero.

Note that stress and strain are conjugate variables, BUT energy is a sum, so it is possible for some
elements of Ci jkl to be negative. e.g. Poisson ratio, ν = − dey

dex
is normally around 0.3 (if you pull some-

thing, it gets thinner). But there is no thermodynamic constraint on this, and values down to -12 have
been found in so-called auxetic materials.

1There is an assumption about homogeneous samples: for phase coexistence the bulk modulus is zero. Curious behaviour
can be obtained for inhomogeneous metamaterials and self-gravitating clusters
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Gibbs-Helmholtz relation for calculating free energy and entropy changes

In an atomistic computer simulation, we can easily evaluate P,V,T,U and H given the position of the atoms
and their velocities. However, entropy is not a function of a particular arrangement of atoms (microstate),
and so nor are F and G.

From the definition dG =V d p−SdT , we have
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This gives us a recipe for calculating changes in G if we know the properties of a series of microstates:
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This is known as the Gibbs-Helmholtz relation. Once G is known, calculating S is straightforward.
The integral on the right hand side is path independent and straightforward to calculate, e.g. in a molec-
ular dynamics simulation, once any reference value G1 is chosen, G2 can be directly calculated. There is
no need to evaluate all possible “Ways” as in kB log(W ).

The Clausius-Clapeyron equation for “first-order” phase changes

We next apply the Gibbs condition to study the mathematical properties of a phase boundary across
which there is a discontinuous change of state variables S and V (a first order transition). A first order
phase change is accompanied by a latent heat (T ∆s), and a specific volume change (∆v).

For two adjacent points A and B on the phase transition line,

at A g1(T,P) = g2(T,P)

at B g1(T +dT,P+dP) = g2(T +dT,P+dP)

To get information on specific volumes and, via entropy, latent heat use:

dg = vdP− sdT

Moving along the phase line g1(P,T ) = g2(P,T ) at each (P,T) point

Using a Taylor expansion for g for each phase about point A, and then equating the g’s at the neigh-
bouring point B≡ (P+dP,T +dT ) which also lies on the phase transition line:
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The partial derivatives can be identified with the entropies and volumes of each phase yielding
[(−s1)− (−s2)]dT = [s2− s1]dT = [v2− v1]dP as previously. Rearranging:(
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=
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Where the suffix pb means we are constrained to moving along the phase boundary. Note: this
implies s2− s1 and v2−v1 per Kg, but the same equation can be used with units per mole or per arbitrary
mass because the unit of normalisation cancels between the numerator and denominator.
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Latent heat

For a phase change at temperature T from phase 1 to 2,

latent heat = l = T (s2− s1)

If s2 > s1, l is positive and heat must be put INTO the system (eg water at 100◦ C changing to water
vapour at 100◦ C).
Applying this to the above relation for
(dP/dT )pb gives the Clausius-Clapeyron equa-
tion for the slope of a phase boundary on a
phase diagram.(
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where pb reminds us that it is the slope of the
phase boundary.

l is always positive going from low T (solid) to high T phase (liquid). For vL > vS (solid expands on
melting), dP/dT is positive. For vL < vS (solid – like ice – contracts on melting) dP/dT is negative.

The equation of the vaporization curve
At least for making order of magnitude calculations, the equation for a vaporization curve can be obtained
quickly from the Clausius-Clapeyron equation. Replace v2 and v1 by vV and vL, the specific volumes of
vapour and liquid respectively. Then for vV � vL, use the ideal gas approximation for the vapour to get:(
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Assuming l is constant, integration along the phase boundary leads to the approximate formula:

lnP =
∫ l

RT 2 dT =− l
RT

+ constant

be careful that the latent heat l may not be constant over the range of integration. e.g. at the critical point
it must be zero.

Trouton’s rule

If the structure of all liquids was the same
and the (lack of) structure of all gases was
also the same, then the amount of disorder
in each would be the same.
Trouton’s “Rule” ∆Svap = 10.5R applies
reasonably well to large molecules (see
figure) which don’t have much structure
to the liquid (i.e. not water). According to
the rule the molar latent heat is 10.5RTvap.
Notice the need to eliminate mass from
the expressions. The number of ways to
arrange atoms is virtually independent of
their mass.
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Changes to state variables crossing first-order transitions
The phase diagram can be related to the behaviour of the
coordinates s (entropy), v (specific volume) and g (the
Gibbs function) – for first order phase transitions.
Consider a system with (T,P) boundary conditions along
the isobar XY. (
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Since entropy, s, is positive, all g versus T curves have
negative slope. In addition, their gradient become steeper
with increasing T . This last feature follows from(
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At the phase transition temperature (T0), the Gibbs func-
tions gL and gS are equal. For T < T0, the solid phase
is stable and so must correspond to the lower curve (for
T < T0) for the Gibbs function. Meanwhile, for T > T0,
gL < gS

The discontinuity in the slope at T0 corresponds to a fi-
nite change in entropy ∆s = −∆(∂g/∂T )P. at the phase
transition. The liquid has higher entropy.
If s is discontinuous, its derivative, the Heat Capacity
T
(

∂ s
∂T

)
P

is infinite.

An equivalent discussion for the traverse X′Y′ – note that
this time it is from liquid to solid – correlates the disconti-
nuity in the gradient of the Gibbs function with respect to
pressure, at P0, with the change in specific volume (den-
sity). In the figure the liquid has the larger value of v,
ie is less dense than the solid, and therefore has a larger
slope (∂g/∂T )p. The solid must therefore have the lower
value of g at high pressure. This is consistent with the
+ve slope of the phase line. For ice/water - water expands
on freezing - ice has the larger (∂g/∂T )p and water must
be the higher pressure phase, consistent with a negative
slope for the ice-water phase line.

Discontinuities at Phase Transitions

Process New phase Divergence
Increasing pressure → smaller volume infinite compressibility

Increasing temperature → higher entropy infinite heat capacity

In an experiment, “infinite specific heat” means suppling finite heat energy with no change in T (i.e
latent heat). “infinite compressibility” means doing finite work (−PdV ) with no change in pressure.

Finally, consider a triple point. The three phases (A,B,C) have different densities, so an isobar cannot
go (A→B→C→A), because that would mean A was simultaneously denser and less dense than B and
C, which makes no sense. The same argument applies for entropies, or any other linear combination of s
and v. Taken together, it means that no segment between lines at a triple point can be more than 180◦.
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