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Synopsis: The Third Law of Thermodynamics. Entropy, probability, disorder.

The Third Law of Thermodynamics.

The Third Law defines the behaviour of entropy at absolute zero.
The Nernst Heat Theorem is an early statement, a compromise version of it is

Any system undergoing a process between equilibrium states as a result of exter-
nal influences, such as pressure, experiences a change in entropy. This change
in entropy tends to zero as the temperature characterising the process tends to
absolute zero.

Nernst made experimental observations as sum-
marised in the diagram. He noticed that for many
chemical reactions, the change in enthalpy ∆H, in-
creased as T rose, while ∆G was reduced. Asymp-
totically, (at zero T) it appeared that they went to the
same value, and with zero slope. From the defini-
tions of G and H for the two curves

∆G = G f −Gi = ∆H−∆(T S)
= H f −Hi−T (S f −Si)
= ∆H−T ∆S

Obviously ∆H = ∆G at T=0, but the curves only touch asymptotically if ∆S→ 0.
An alternative statement of the Third Law, attributed to Planck, refers to a perfect crystalline state.

The entropy of all perfect crystals is the same at absolute zero,
and may be taken to be zero.

The key feature is that all perfect crystals would all have the same value of entropy at the absolute zero
of the thermodynamic temperature T . That this value should be uniquely chosen is not just a matter of
convenience. The choice S0 = 0 at T = 0 allows a strong link to be made between thermodynamics and
statistical mechanics where the same assumption is made and supported by evidence from a very wide
range of physics phenomena.

All this leads naturally to a third statement of the Third Law, due to Simon :

The contribution to the entropy from each aspect of a system which
is in thermodynamic equilibrium disappears at absolute zero.

It is usually helpful to be able to separate out the various contributions to entropy (which is an “extensive”
variable – so various contributions can be added). For a crystal, contributions come from the arrange-
ments of atoms (“configurational entropy”), from the orientations of atomic spins, or molecular units,
from nuclear properties (“nuclear spin”) and from motion of all of these (eg lattice vibrations). As we
saw in magnetic cooling, isenthalpic processes may involve entropy changes in individual components
only the total is conserved.

The validity of the Third Law, however it is stated, stems from its derivation from properties of
substances in general and its successful use in describing the low temperature behaviour of a wide range
of processes and parameters.
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Consequence: Vanishing Thermal expansion coefficient, β

Use a Maxwell’s relation to get β = 1
V (

∂V
∂T )P =− 1

V (
∂S
∂P)T . n.b. the partial derivative is isothermal.

By the Nernst statement, as T approaches zero, ∆S→ 0, and so β → 0.

Consequence: Vanishing Heat capacity CV = T ( ∂S
∂T )V .

Use d
dT lnT = 1

T ⇒ d lnT = dT
T to get CV = ( ∂S

∂ lnT )V .
As T → 0, lnT →−∞, so for a given small change ∆T , ∆S→ 0 but ∆(lnT ) may still be quite large.

That means that ∆S
∆ lnT → 0. and CV → 0 as T → 0. The same conclusion is found for all specific heats.

Experimentally, for metals at low temperatures CP = aT +bT 3 where a and b are constants. The first
term is associated with heat uptake by (or release from) the conduction electrons aspect, the second is
associated with the lattice vibrations aspect.

Consequence: Zero slope of the phase boundary for first order transition

Recall the Clausius Clapeyron derivation
( dP

dT

)
PB = ∆S

∆V
Since ∆S→ 0 as T → 0, so the slope of the phase line must be zero. This is observed experimentally,

e.g. for the liquid phase II / solid phase transition for He4 in the low temperature limit.
The Third Law: unattainability of absolute zero
Another statement of the Third Law:

It is impossible to reach absolute zero using a finite number of processes.

Example: Magnetic cooling again

Different aspects of entropy were illustrated by refrigeration using adiabatic demagnetisation (Topic 11).
In this method, a paramagnetic salt is first magnetised at constant temperature - extracting entropy from
the magnetic aspect. It is then demagnetised adiabatically, shifting thermal entropy into the magnetic as-
pect, whereupon its temperature falls. The repeating two stages, isothermal magnetisation plus adiabatic
demagnetisation, is a process which cannot reach absolute zero according to Third Law.

Aside: The Schottky relation c = b/T 2 (Topic 11) does not obey the Third Law. That’s because at low
enough T, paramagnets acquire spontaneous magnetisation (Curie-Weiss Law) for which the Schottky
heat capacity is c = b/(T −Tc)

2. Below Tc, heat capacity drops to zero.
Consider a succession of these processes between zero and a
fixed value of magnetic field. With the final temperature of
one process being the initial temperature of the next, the tem-
perature drop becomes progressively smaller. The two curves
of entropy versus temperature, one for zero field (B = 0) and
the other for fixed field B = B0, both end on T = 0 with S = 0
according to the Nernst statement of the 3rd law. Graphically
it is seen that the decrease of entropy in successive processes
becomes smaller in such a way that for a finite number of pro-
cesses neither the entropy nor the temperature reaches zero.

Disobeying the Third Law: Ideal Gas Entropy and Free Energy

The heat capacity for an Ideal gas is cv = 3R/2, independent of temperature.
Using cV

T = ( dS
dT )V and a Maxwell relation ( dS

dV )T = ( dP
dT )V we can easily calculate changes in ∆S:

∆S =
∫ T

T0

Cv

T
dT +

∫ V

V0

(
∂P
∂T

)
V

dV =
∫ T

T0

3NR
2T

dT +
∫ V

V0

NR
V

dV = NRcv ln
T
T0

+NR ln
V
V0
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Which implies that the entropy difference between absolute zero and finite T for an ideal gas is infinite.
Obviously this is nonsense: the absolute value of Entropy (and Free Energy G, and F) are undefined for
an Ideal Gas. The best we can do is find their value relative to some reference state.1

Glasses: Kauzman’s Paradox
Glasses look as if their entropy cannot be reduced to
zero even if they can be cooled to 0 K - the figurea

shows data derived from specific heat measurements
for various supercooled liquids.
There are many ways to arrange the atoms to still be
a glass. A glass does not have the long range order
of a crystalline substance. It has entropy “frozen-
in”. It is well known (if often untrue) that – like
a liquid – glass can flow (though extremely slowly)
with structure gradually crystallising.
So the get-outs are that ideal gases aren’t quantised,
and glasses are not equilibrium systems!

aDebenedetti Nature 410, 259-267, 2001, after Kauzman

Thermodynamics at the microscale: Statistics, entropy, probability and disorder

DEFINITION: A micro-state as a way the particles could be arranged at one instant in a given phase
DEFINITION: A macro-state is a group of microstates which correspond to the same thermodynamic
quantities, P, V, T, phase etc.
DEFINITION: Ergodicity means that it is actually possible to move from any microstate to any other.
DEFINITION: Equipartition means that any microstate in an isolated system is equally likely.2

Note that thermodynamics is not just a consequence of microscopic statistical mechanics. Macrostates
can only be defined at the macroscopic level, and without knowing what the macrostate is, one cannot
count its microstates. The number of microstates W is a rapidly increasing function of the energy. In the
Boltzmann definition, S = kb lnW , so zero entropy means there is only one way of arranging the atoms
(W = 1). At the lowest temperature there will eventually only be one state, the quantum ground state,
and entropy S = kBlog(1) = 0.

Microstate as a point in multidimensional “phase space”

A full description of a system at give time requires six coordinates per particle, three postional and and
three for momentum (“six degrees of freedom”). For a gas in equilibrium, the molecules are distributed
uniformly in space. Their momentum directions are also uniformly distributed in “momentum space”
p=(px, py, px). The distribution for momentum magnitude p has a single maximum, and is known as the
Maxwell-Boltzmann distribution.

A countable (quantised) volume of the phase space is ΠN
i=1(∆ri.∆pi) = (h̄/2)3N

Equivalently, we can consider N points representing N particles in a 6D space. It may be that two
particles are in the same place.

Ergodicity and large numbers are essential to this argument: the particles must be able to move from
one microstate to another. This ensures that if each microstate is equally probable, for a large sample
there is an overwhelming probablity of observing the system in one or another of a very large number of
equivalent microstates which make up the highest entropy macrostate3.

1This is why “Standard Temperature and Pressure” has such iconic status in chemistry.
2Equipartition is only true for isolated systems, in general the probability depends on the energy of the microstate. But for

an isolated system, (fixed N,V,S), all states have the same energy.
3There is a hidden assumption here, that each microstate can be assigned to a macrostate, which isn’t always straightforward
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Example: Dividing particles between states

Consider a finite number of particles (N) which can move between states of similar energy (M). Ergod-
icity (freedom to move around) means each particle is as likely to be in range 1 as in range 2. The states
may be, e.g., positions of a gas molecule, or quantum energy levels which are either degenerate or much
closer together than the thermal energy kBT .

Consider a system of only N=3 particles and M=2 states There is only one arrangement with all
particles in state 1 [W=1]. However, there are three arrangements with one particle in state 1 and two in
state 2, since the particle in state 1 can be any of the three available [W=3]. 4 In general the numbers of
ways [W] with N particles in M states are given by the binomial coefficients

(N
M

)
, (Pascal’s triangle).

When all this is extended to a large number of particles and states the thermodynamic probability
of finding all particles in a single state becomes minute compared with equal numbers in all states.
Assuming ergodicity, the observed “equilibrium” will be most likely arrangement even if we start in an
unlikely one. This is a microscopic model for irreversibility e.g. free expansion takes us from a low
probability (entropy) arrangement to a high probability one, from which we never return, even though
the dynamics of the particles is time-reversible.

In Statistical Mechanics, we will see how properties of a macrostate can be written as an average over
its microstates. This statistical mechanics will involve sums and integrals. The integrand just defines a
property. Solving the integral is just maths, the physics lies in defining the limits of the integral. But...

There is, in general, no way to define whether a microstate “belongs” to a macrostate

Disobeying the Second Law: Maxwell’s Demon

If the Second Law of Thermodynamics is as a statistical law, then there’s a chance of breaking it.
Suppose it were possible to shift the more energetic molecules of a sample of gas to part of the

containing vessel. Then energy would be transferred preferentially from the cooler part of the sample
(which would become progressively cooler) to the warmer part (which would become progressively
warmer). To violate the Clausius statement would require achieving this without doing any mechanical
work. One idea was the intervention (proposed by Maxwell) of an “alert and well-informed finite being”
in total control of a special massless shutter mechanism, who only let fast particles go from left to right,
and slow particles from right to left. It became known (to Maxwell’s disapproval) as Maxwell’s demon.

For small systems in small timescales it is sometimes possible to violate the Kelvin statement, and
extract work from a system without supplying heat. Imagine dragging an object through a cylinder
containing ideal gas atoms. Microscopically, the internal pressure is supplied by atoms bouncing off the
piston at random. Normally, there will be more collisions on the front side of the object. But, if there
are few enough atoms, and short enough time, there is a chance the number of atoms striking the object
from behind may be greater. In that case the net force will be in the direction of motion, the system
doing work F.dx. The catch is that more often work is done on the system, and we can’t predict when the
“violation” will occur. This sort of thing has been shown experimentally.5

Other definitions of entropy beyond this course

The probability interpretation of entropy leads to yet another definition, the Gibbs Entropy:

S =−kB ∑
i

pilnpi

where pi is the probability of finding the system in microstate i. The generalisation of this to quantum
mechanics gives the von Neumann entropy6. These are equivalent to the heat definition, and also to
the Shannon Information Entropy which quantifies how much information is contained in a message
(and therefore, how much a message or image can be compressed, e.g. using gzip). Remarkably, these
aspects of entropy are all the same, and the missing entropy in Maxwell’s Demon is the information in
the Demon’s brain!

4Some people find this obvious, others say it defies common sense. Look up the “Monty Hall problem“
5Wang et al (2002). ”Experimental demonstration of violations of the Second Law of Thermodynamics for small systems

and short time scales”. Phys. Rev. Letters 89 (5): 050601
6similar to Gibbs, using quantum mechanical probabilities, the so-called “density matrix” which you won’t see in JH
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