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Lecture TOPIC 17 Synopsis:Chemical Potential

Chemical potential µ - treatment of open systems
So far we have considered closed systems (fixed number of particles). Now we allow particle
exchange: supposing we add dN extra particles to a single component system, without work or
heat, the energy must change. So we have to modify the combined 1st and 2nd law,

dU = T dS−PdV +µdN with µ =
(

∂U
∂N

)
S,V

(1)

The above modification is mathematically equivalent to including an extra source of work. This
is not especially useful, since it is unusual to be able to add particles (dN) without also chang-
ing the entropy (dS). More convenient boundary conditions require the other thermodynamic
potentials. All the definitions F =U−T S, H =U +PV, G = H−T S = F +PV are unchanged.

µ =
(

∂U
∂N

)
S,V

=
(

∂F
∂N

)
T,V

=
(

∂G
∂N

)
T,P

(2)

Consider changes in extensive Gibbs free energy, dG = −SdT +V dP+ µdN. We can in-
crease all the extensive quantities by a factor of α: ⇒ αG(P,T,N) = G(P,T,αN). Taking the
derivative of both sides with respect to α gives:

G=
(

∂G(P,T,αN)

∂α

)
P,T

=N
(

∂G(P,T,αN)

∂ (αN)

)
P,T

=
N
α

(
∂G(P,T,αN)

∂N

)
P,T

=N
(

∂G(P,T,N)

∂N

)
P,T

G = Nµ for a single component system, µ is the specific Gibbs free energy (3)

s =−(∂ µ/∂T )p, v = (∂ µ/∂ p)T ; for a single component system (4)

Once again, Gibbs is special because its natural variables, T and P, are intensive. The Gibbs
free energy tells us how much work is done in adding a particle to a system.

Equilibration of two regions exchanging particles

Imagine dividing an isolated closed system into two parts, A and B, separated by a freely mov-
ing permeable membrane. Since it is isolated, total U, N and V are conserved, so for exchanges
of energy, particles or volume we have:

dUA +dUB = 0, dNA +dNB = 0, dVA +dVB = 0.

And dSA +dSB > 0 with equality at equilibrium.
Rearranging EQN 1 we find: dS = dU

T + P
T dV − µ

T dN, which, when applied to the two-
part isolated system gives( 1

TA
− 1

TB

)
dUA +

(PA

TA
− PB

TB

)
dVA−

(
µA

TA
− µB

TB

)
dNA > 0
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So at equilibrium, T, P and chemical potential are equal µA = µB. The first term shows that
energy flows from hot to cold until TA = TB. The second term shows that a higher pressure region
will increase its volume (for equal T) and the third that particles flow from high to low chemical
potential (for equal T). Particles (mass) flow along gradients of the chemical potential.

Mass flow can be used to do work. The Availability (maximum work extractable), when a
reservoir can exchange particles with a system, becomes:

A =U−T0S+ p0V −µ0N (5)

⇒ dA = (T −T0) dS− (p− p0) dV +(µ−µ0) dN ≤ 0 (6)

So a chemical battery or an explosive is able to do work because its chemical potential is
out of equilibrium with its environment.

Equilibrium in Multicomponent system

We now revisit the Gibbs Phase Rule. Recalling the Second Law: a system is in equilibrium
when its total Gibbs free energy is minimised. For a multicomponent system, open boundary
conditions we must specify µi for each component.

An N-component open system requires 2+N boundary conditions, e.g. P,T and µ for each component.

This is very challenging when the components interact. We start by looking at some special
cases.

Chemical potential of ideal gases

Ideal gases describe the limit of any dilute amount of weakly interacting material. This includes
gases, but also reagents in solution, conduction electrons in solid, photons in cavities, dark
matter etc. Because there are no interactions, we can minimise the total Gibbs free energy of an
ideal gas mixture by minimising the components independently.

For a pure ideal gas, consider the intensive quantity g = h−T s. Recalling that for an ideal
gas h = u+Pv = u(T ) +RT is a function of temperature only, and the ideal gas entropy is
s = cP ln(T/T0)−R ln(P/P0)+ s0 and integrating

µ−µ0 = cP(T −T0)+RT ln(P/P0)− cPT ln(T/T0)

Note that we need to define a reference temperature and pressure. It would be highly incon-
venient to set to P=0, T=0, because the ideal gas doesn’t obey the Third Law.

The chemical potential increases as the pressure in the gas increases isothermally. This
means more work is required to add a particle to a gas at high pressure or, equivalently, less work
is required to supply a particle from a region of high chemical potential. In an open system, it
is useful to specify the chemical potential of the surroundings as a boundary condition.

n.b. using the ideal gas law the chemical potential becomes

µ−µ0 = cP(T −T0)+RT ln(V0/V )− cvT ln(T/T0)

at fixed T, this can obviously be lowered by maximising V, i.e. the gas will occupy the entire
volume available.
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Chemical potential of interacting particles

Consider a system containing two types of interacting particles, the internal energy of one sub-
system of particles uA now depends on the concentration of the other. This means that to min-
imise G, we can no longer simply minimise all the gi independently. This generates some
transcendental equations, so we’ll return to this in the next topic.

Raoult’s Law and Dalton’s Law for Ideal Gases

Non-interacting atoms in the same system can be treated as independent ideal gases. Their tem-
perature and volume are the same, chemical potential depends on the partial pressure. Higher
concentration of a gas means higher chemical potential.

Raoult: The partial pressure of the solute is proportional to its concentration piV = NiRT .

Dalton: The total pressure is the sum of the “partial pressures” of each component (P = ∑i pi).

Taken together, these extend the applicability of the ideal gas to any non-interacting com-
ponent: dilute chemicals in solution, photons in a cavity etc.

In a closed system, it follows

External contributions to system’s internal energy - gravity and planets

Additional terms might be added to the potential energy, e.g. mgz in a gravitational field (z =
height; m=molar mass ). This term will appear in the chemical potential:

µ = u+Pv−T s+mgz

For an ideal gas, we can consider each component independently. So the mgz term means that
heavier gases will sink.

Chemical potential determines the structure of a planetary atmosphere. At equilibrium, µ

must have the same value at all altitudes. Since the external gravitational field g(z) varies with
height, the pressure is *not* constant.

Example: Solubility of gas x in water

Consider a component in an open system with external boundary conditions T0,P0 and chemical
potential, µ

(0)
x , set e.g. by the partial pressure of gas x above some water. Suppose that the

specific enthalpy of solution (binding of the x atom to the solvent) is δhx per mole of particles
dissolved. What is the concentration, cx, of x particles in the system at equilibrium?

The chemical potentials of system and surroundings must be equal. So, assuming ideal gas
entropy (Tx = T0) and Raoult’s Law for partial pressure in solution (px = P0Nx/N = cxP0):

µ
(0)
x = µx = δh+RT0 ln px/P0

and rearranging we find:
cx = exp(µ(0)

x −δh)/RT0

So, even if δh� µ
(0)
x (x is “insoluble”), there is still some x in solution, and the amount

increases with temperature. For δh < µ
(0)
x (x is “soluble”) the concentration is larger than 1,

which indicates that the ideal gas (dilute solution) approximation has broken down.
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Thermodynamics in Chemistry

In many situations there are many different particle species, e.g. in chemistry molecules react
to form other molecules; a chemical potential can be defined for each one in terms of its partial
pressure. The Central Equation and definition of G can be extended straightforwardly giving:

dG =−SdT +V dP+∑
i

µidNi and G = ∑
i

µiNi (7)

the derivative of the second expression is dG = ∑i µidNi +Nidµi, and equating these two
expressions for dG yields the Gibbs-Duhem relation:

S dT −V dP+∑
i

Ni dµi = 0 (8)

For a typical case of a chemical reaction with P and T fixed by the boundary conditions, the
equilibrium is at ∑i Nidµi = 0.

For a closed system (ie no particle exchange) in equilibrium with a T,P reservoir G is
minimised at equilibrium. If chemical reactions are possible, then dNi 6= 0 and reactions occur
spontaneously until G is minimised. From EQNs 7 & 8,

∑
i

µidNi = 0 closed system at equilibrium, T and P fixed by boundary condition. (9)

Both dG = 0 and dF = 0 give the same result so this holds for fixed T and V boundaries also.
There will be some constraints on dNi because while molecules can react, the number of atoms
of each element is fixed.

Example (further examples given online)

Consider a chemical reaction in a closed system, e.g. 2H2+O2↔ 2H2O. Molecules can react,
but the number of atoms of each element is fixed:

Conserving the number of atoms can be represented mathematically with a constraint

∑
i

bidNi = 0

where the sum runs over components H2, O2 and water with bH = 2, bO = 1, bW =−2.
We use this constraint to eliminate the dNi in the equilibrium condition EQ. 9

∑
i

biµi = 2µH +µO−2µW = 0 (10)

This defines the chemical equilibrium of a reaction in terms of the chemical potentials of the
reagents. Actually calculating the value of µi is complicated, since it involves the strength of the
bonds in the molecules. An approximation would be to treat each component as an ideal gas,
and add a constant “chemical bonding” internal energy ui to each species, with 2uH +uO > 2uW
indicating that the reaction is exothermic.

However we can see some general principles. At high T , entropy will dominate and the
equilibrium will favour 2H2 +O2. If we add more of one of the reagents, say H, then its partial
pressure and µH will increase. But that would mean the equation 10 is no longer satisfied. To
return to equilibrium (i.e. to minimise G), the system reacts to create more water (increasing
µW , reducing µH and µO).

Following a similar argument for two phases of the same substance, (e.g. gas+liquid) gives
b1 = −b2 so the equivalent of equation 10 requires the chemical potentials to be equal, as we
have seen. For multiple components this is not the case.
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Reaction between “ideal gases” (PV=NRT) at fixed T,N (Omitted 2019)

The Gibbs free energy is a property of the whole system, but we can define separate chemical
potentials for each component, to describe how a reaction reaches equilibrium, so:

dG =V ∑
i

d pi−SdT +∑µidNi

and for a system of ideal gases (labelled i) with fixed T = T0, N = ∑Ni):

dG≡∑
i

dµi = ∑
i

RT
pi

d pi

Substituting these expressions for µi into the formula for the reaction constraint

∑
i

bi(µ
0
i +RT ln[pi/p0

i ]) = 0 (11)

with µ0
i the chemical potentials at reference pressure p0. pi are the partial pressures for each

species. The sum can be converted to a product inside the logarithm.

ln(K)≡ ln

[
∏

i
(pi/p0)

bi

]
=−∑i biµ

0
i

RT
=⇒ K(T )≡∏

i
(pi/p0)

bi = e−
∑i biµ

0
i

RT (12)

Defining the equilibrium constant K(T ) which gives the proportions of reactants in equilibrium.
Differentiation gives a relation between K(T ) and the Enthalpy of reaction:(

∂ (lnK)

∂T

)
p
=

1
RT 2 ∑bi(µ

0
i +T s0

i ) =
∑biH0

i
RT 2 (13)

Recalling that bi are just constants to balance the reaction equation, this can be written d ln(K)/dT =
∆H/RT 2 where ∆H is the molar heat of reaction. The equation is known as “van Hof’t isobar”
equation in chemical thermodynamics. ∆H is experimentally measurable as the heat of reaction
in a continuous flow process.

Notice the similarity between the equilibrium constant K(T ) and the Boltzmann Factor for
the probability of observing a microstate: exp(−∆E/kbT ). Using the free energy accounts for
the entropic contribution in the macrostate.

Nonequilibrium systems

The ideal gas Chemical Potential depends only on P and T , but for interacting particles those
interactions contribute to the internal energy u, and hence to g = u+Pv−T s. If the interactions
are between different species, say i and j, then gi depends on the concentration of the other
species j. Concentration gradients of j then cause the flow of i-type molecules. Combined with
a membrane which only allows some species to pass through, this allows inhomogeneous local
regions to maintain themselves. Ultimately, such regions can be called “life”.
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