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Brinicles and ice cream makers - Adding salt to ice water

Consider mixing salt into a system containing water and ice initially at its melting point
(0oC) together. What final temperature will one get?

To answer this consider the equilibrium situation of a two-component solution of ice in
contact with a salt solution. Salt can dissolve in water, but not in ice. So the chemical potential
of liquid water with a fraction X of salt is the gibbs free energy of the pure water, plus the
enthalpy of solution, comprising the increased chemical attraction between water and salt Hsol .

µL(T,P,X) = µL(T,P,0)+XHsol +RT ln(1−X)

Note the chemical potential of the water depends on the concentration of the salt.
Ice and liquid are in contact, so the chemical potential of H2O in the ice, µI , and in the salt

solution, µL, must be equal at equilibrium.
Assuming that there is no change in pressure1 (dP = 0), we can Taylor expand µL(p,T,X)

about X = 0, where X is the molar fraction of ions, Na++Cl− in the solution 2.
1This will be true if the system is in contact with the atmosphere, and can quickly expand of contract. We also

assume that no heat is lost to the atmosphere, since the heat conduction of air is low.
2the molar fraction of both ions are identical since we are only adding NaCl) with X = 2NNa+/(2NNa+ +NL)
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Where in the last equality we used s =−(∂ µ/∂T )p from TOPIC 17. For the ice
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Provided we always have ice in equilibrium with salt water3, the system moves along the
coexistence line in the {X ,T} plane as ice melts. So we must have a Clausius-Clapeyron type
relation (dµL)saltwater-ice = (dµI)saltwater-ice,⇒(dT
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with L the latent heat of melting of pure ice into pure water evaluated at the point X = 0.
To simplify matters further, we assume that the salt solution is ideal (Hsol = 0).

µL(T,P,X) = µL(T,P,0)+RT ln(1−X)
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Remarkably, the final temperature of the mixture is lower than the initial temperature of
either component. Essentially the final state is obtained if the salt was added as a hot solution
of brine, provided only that there was enough ice initially that it didn’t all melt.

This result is independent of the properties of salt (other than that it forms an ideal solution).
Given the concentration of salt added we can estimate the drop in temperature. From the

Clausius-Clapeyron slope on the phase diagram L= 6010 Jmol−1, T = 273.15 K. The maximum
solubility of salt in water is X = 0.16 at the lowest temperature achievable4. Therefore within
the above approximations (eg no heat transfer, L is independent of X and Hsol = 0) we estimate
an achievable drop in temperature of 16.5 K.

The lowest freezing point of salt solution is actually -21.1◦C indicating that the dominant
effect in cooling is entropic. If we relax the approximations of constant L and Hsol = 0 we find(
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Separating this expression into T and X integrals is fiddly, but the outcome is that the cooling
effect is even bigger. At -21.1oC one has pure water ice and pure hydrated salt with no salt
solution. This cooling effect can be used in ice-cream makers.

3This is an assumption, but once the derivation is completed we could use the first law to check that all the
water didn’t freeze

4This is molar fraction, in the phase diagram the axis in weight percentage
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