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Thermodynamics & Statistical Mechanics (U03272)

Section A: Answer ALL of the questions in this Section

A.1 a) What are the units of entropy? [2]

b) What is the entropy change of a working substance taken around (i) a com-
pletely reversible closed cycle and (ii) a closed cycle containing irreversible
steps? Explain your reasoning. [3]

A.2 The expression dU = TdS+Fdℓ relates changes of the internal energy of an elastic
spring to changes of entropy S and length ℓ, with F the tension in the spring.
From this derive the following Maxwell relation explaining your reasoning: [5]

(

∂T

∂ℓ

)

S

=

(

∂F

∂S

)

ℓ

.

A.3

The solid line in the figure shows the temperature dependence of the Gibbs
free energy at constant pressure for one Kg of a substance crossing a first order
transition at 100 K. Estimate the latent heat for the transition. [5]

A.4 Consider a collection of N = 3 weakly interacting dipoles in an external magnetic
field H . Each dipole can either be in the ↑ state of energy ǫ↑ = −mH or in the
↓ state of energy ǫ↓ = +mH . Write down all the possible macrostates of the
system labelled by the total energy E and the microstates corresponding to each
macrostate. [5]

A.5 An atom can be in 4 possible states of energies ǫ0 < ǫ1 < ǫ2 < ǫ3. Let pi

denote the probability that the atom is in state of energy ǫi. At a temperature
T = 300K, it is found that p0 = 0.80, p1 = 0.10, p2 = 0.07. Calculate the energy
difference ǫ1 − ǫ0. [5]
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Thermodynamics & Statistical Mechanics (U03272)

A.6 (a) Write down the Bose-Einstein distribution. Explain the meaning of all the
symbols you write down. [3]

(b) What happens at and below the Bose-Einstein temperature? [2]
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Thermodynamics & Statistical Mechanics (U03272)

Section B: Answer THREE questions from this Section

Part B1: Answer AT LEAST ONE question from this Part.

B1.1 This question covers the second law and a cyclic process.

a) The Kelvin statement of the second law is that no process is possible which
transforms heat entirely into work. The statement of the second law due to
Clausius is that no cyclic process is possible whose only effect is the transfer
of heat from a colder to a hotter body. By considering a ‘composite’ engine,
comprising two separate engines show that if the Clausius statement is not
true then neither is the Kelvin statement. [6]

In a simplified Stirling engine, gas is displaced between hot and cold reser-
voirs with a plunger. The gas heats or cools rapidly at constant volume
when brought into contact with each reservoir. It then expands or contracts
at constant temperature doing or requiring the performance of useful work.
The cycle is shown in the indicator diagram above.

Consider the working substance to be a monatomic ideal gas in the
following.

b) Show that the heat absorbed Q and work done Wdone by the gas going from
V1 to V2 at constant T are given by: [5]

Wdone = Q = RT ln
(V2

V1

)

per mole of gas.

c) For the isometric (constant volume) changes the gas is brought directly
from contact with one reservoir into contact with the other. Determine the
heat absorbed and the work done by the gas for the process T1 → T2 at
volume V1. [You can assume without proof that the molar heat capacity of
a monatomic ideal gas is cV = 3

2
R.] [3]

d) Hence derive an expression for the efficiency of the cycle working between
two heat baths at T1 and T2 with volumes in the ratio V2/V1. [3]

e) Explain briefly what ‘regeneration’ is and how this can be used to improve
the efficiency. [3]
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Thermodynamics & Statistical Mechanics (U03272)

B1.2 This question concerns the adiabatic free expansion (Joule expansion) of a Van
der Waals gas.

a) What is the physical significance of coefficients a and b in the Van der
Waals equation of state,

(p +
a

v2
)(v − b) = RT ,

where v is the molar volume? [4]

b) The temperature change for an adiabatic free expansion (Joule expansion)
from molar volume v1 to molar volume v2 is given by:

∆T =

∫

v2

v1

dv µJ with µJ =
(∂T

∂v

)

U

.

Outline the derivation of the above expression, explaining carefully why an
integral of a differential quantity can be used to calculate the change in
temperature for a free expansion, which is not an equilibrium process. [4]

c) Show that (for any fluid): [6]

µJ =
1

cV

(

P − T
(∂P

∂T

)

V

)

with cV the constant volume molar heat capacity.

d) Hence show that for a Van der Waals gas: [3]

µJ = − a

cV

(1

v

)2

.

e) In the light of the above, comment on the expected sign of the temperature
change in a free expansion. [3]
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Thermodynamics & Statistical Mechanics (U03272)

B1.3

This question concerns heat capacity and a continuous (2nd order) phase transi-
tion. The figure shows the heat capacity divided by temperature for a material in
zero magnetic field (solid line). Superconductivity occurs below a phase transi-
tion at T = 1K. Also shown is the heat capacity in an applied field Happ sufficient
to suppress superconductivity (dashed line); the latter line is indistinguishable
from the solid line for T > 1 K.

a) The internal energy for a substance in an applied magnetic field Happ is
given by dU = TdS + µ0V HappdM with M the sample magnetisation (you
can assume changes of volume are zero in this question). Starting from this
derive the Maxwell relation: [7]

1

µ0V

( ∂S

∂Happ

)

T

=
(∂M

∂T

)

Happ

.

b) For T > 1K the magnetisation is observed to be independent of tempera-
ture. Show that for T > 1K this implies that S(Happ, T ) = S(0, T ). [3]

c) Give a statement of the 3rd law of thermodynamics. From this explain why
the entropies of the superconducting state and non-superconducting state
must be equal at zero temperature. [4]

d) Starting from the definition of heat capacity derive the following expression
for the entropy at temperature T . [3]

S(T ) =

∫

T

0

CHapp

T
dT .

e) Hence deduce a relationship between the areas enclosed under the solid and
dashed lines between 0K and 1K. [3]
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Thermodynamics & Statistical Mechanics (U03272)

Part B2: Answer AT LEAST ONE question from this Part.

B2.1 Consider a collection of N atoms at temperature T . Each atom can be in either
of two states: state 0 with energy ǫ0 and state 1 of energy ǫ1, with ǫ0 < ǫ1.
Assume there are n0 atoms in state 0 and n1 = N − n0 atoms in state 1.

(a) What is the total energy of the system? [3]

(b) Calculate the entropy of the system using Boltzmann’s law. You may
assume that N ≫ 1, n0 ≫ 1 and n1 ≫ 1. Give all the steps of the
derivation. [7]

(c) By minimising the Helmholtz free energy F with respect to x ≡ n0/N ,
show that in thermal equilibrium

n1

n0

= exp

(

−ǫ1 − ǫ0

kT

)

.

[10]

B2.2 Consider a semi-classical gas of N relativistic spin 1

2
particles of mass m with an

energy ǫk versus wavevector k relation

ǫk =
√

~2c2k2 + m2c4

where c is the speed of light. The particles are confined to a 2-dimensional square
box of side L.

(a) Show that the density of states in k space Γ(k) is given by Γ(k) = L2k/π. [5]

(b) Hence show that the density of states g(ǫ) is given by

g(ǫ) =

{

0 if ǫ ≤ mc2

(L2ǫ) / (c2
~

2π) otherwise .

[7]

(c) Calculate the single particle partition function Z(1). [5]

(d) Calculate the partition function Z for the gas and its free energy F in terms
of Z(1). [3]
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B2.3 Consider a quantum gas of weakly interacting electrons with energy versus wavevec-
tor relation

ǫk =
~

2k2

2m
,

where k is the wavevector and m the mass of the electron. The electrons are
constrained to move in one dimension, along a line of length L. The density of
states g(ǫ) can be shown to be equal to

g(ǫ) =
L

π

√

2m

~2

1√
ǫ

.

(a) If the total number of electrons is N , calculate the Fermi energy ǫF and
the Fermi temperature TF . [6]

(b) At zero temperature, calculate the total energy of the gas in terms of the
density N/L. [6]

(c) What would the corresponding zero temperature ground state energy be if
the electrons were assumed to behave as a classical gas of weakly interacting
constituents? [2]

(d) How do you expect the energy to vary with temperature T for non-zero
but low temperature, i.e T ≪ TF ? [6]
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