College of Science and Engineering School of Physics & Astronomy

Thermodynamics SCQF Level 9, PHYS09021 Monday 6th May 2013 14.30 - 16.30

Chairman of Examiners Professor A Trew

External Examiner Professor D McMorrow

Answer ALL of the questions in Section A and TWO questions from Section B.

The bracketed numbers give an indication of the value assigned to each portion of a question.

Only the supplied Electronic Calculators may be used during this examination.

A sheet of standard constants is available for use during this examination.

Anonymity of the candidate will be maintained during the marking of this examination.

Section A: Answer ALL of the questions in this Section

A.1. Define the thermodynamic potentials H, F and G in terms of pressure, volume temperature, entropy and internal energy. [2]

Use the central equation dU = TdS - PdV to express dH, dF and dG in terms of changes in their natural variables.

A.2. What are the four stages of the Carnot cycle?

Draw an indicator diagram (P vs V) showing flows of heat and work into and out of the working substance.

- **A.3.** A rock at 400K with heat capacity c_p is placed in a very large lake at 300K. The rock cools rapidly to 300K. Calculate the entropy change, due to this process, of
 - a) the rock.
 - b) the lake.
- A.4. The imperfectly-insulated cool box of a Carnot refrigerator at temperature T loses heat at a rate proportional to the difference between T and the atmosphere temperature T_0 : i.e. $\dot{Q} = B(T_0 T)$, with B=4JK⁻¹s⁻¹.

Show that the temperature of the cool box is given by the solution of:

$$T^2 - (2T_0 + \frac{W}{B})T + T_0^2 = 0,$$

and evaluate this temperature in the case where the refrigerator runs at power input $W = 1200 \,\mathrm{J\,s^{-1}}$, and pumps heat to the atmosphere at $T_0 = 300 \,\mathrm{K}$.

[5]

[3]

[5]

[5]

Section B: Answer TWO of the following THREE questions

- B.1. a) State a version of the Third Law of Thermodynamics. [2]
 - b) By considering S(T, V), show that:

$$\Delta S = \int \frac{c_V}{T} dT + \int \left(\frac{dP}{dT}\right)_v dV.$$
[4]

- c) Calculate an expression for the change in entropy when one mole of a monoatomic ideal gas is heated from T_0 to T at constant pressure. [5]d) For an ideal gas at constant pressure, sketch the dependence of entropy on [4]temperature. e) Discuss the behaviour of the entropy of an ideal gas as $T \to 0$. What can [5]
- one conclude about the ideal gas equations in this limit?

B.2. a) Explain the assumptions which allow us to write

$$dS = \left(\frac{\partial S}{\partial T}\right)_V dT + \left(\frac{\partial S}{\partial V}\right)_T dV$$

requiring only *two* partial derivatives. Give an example where more than two partial derivatives would be required.

b) Use Maxwell relations and the triple product rule to show that the ratio of constant-pressure and constant-volume heat capacities is the same as the ratio of isothermal and adiabatic bulk moduli, i.e.

$$\frac{C_P}{C_V} = \frac{K_s}{K_T}.$$

[5]

[7]

[2]

[2]

- c) Use this result, and the fact that, $C_p C_v = TV\beta^2 K_T$ to evaluate the adiabatic bulk moduli for
 - i) a monatomic ideal gas [2]
 - ii) a diatomic ideal gas.
- d) Discuss which of K_s and K_T would be appropriate for calculating
 - i) the density increase of a tin can as it falls to the ocean floor [2]
 - ii) the speed of sound in an ideal gas.

(You do not need to evaluate these quantities.)

- a) Copy the figure into your script, labelling each phase. [1]
- b) What is the significance of the points marked A and B [2]
- c) Write down the Clausius-Clapeyron equation
- d) What should happen to the slope of the solid-gas boundary as $T \to 0$? [2]

On heating at atmospheric pressure (0.1MPa, dotted line) two phase transitions occur.

e) Explain, giving at least one example, what is meant by a first order phase transition.
 [5]

Sketch graphs of the entropy and Gibbs free energy of water against temperature along the dashed line, indicating the transition points C and D. Note carefully any discontinuities in the curves, or in the gradient of the curves.

f) Given that the latent heat of melting for water is 334kJ/kg, and that 90% of an icecube in a glass of water is below the surface, calculate the slope of the phase line at C.

[2]

[2,2]

[4]