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Thermal Physics (PHYS09061)

Section A: Answer ALL the questions from this Section

Throughout this paper, β = 1/kBT where kB is Boltzmann’s constant
and T is temperature.

A.1 Write down the Clausius Inequality for a system undergoing a cyclic process, exchanging
heat with a number of reservoirs, and show how this implies the existence of a state
variable, the entropy. Define all your terms carefully. [5]

A.2 For a magnetic system at zero pressure, the internal energy is U = HM − TS where
H is the applied field and M is the magnetisation. The equivalent central equation is
dU = TdS +HdM .

Prove that (
∂T

∂M

)
S

=

(
∂H

∂S

)
M

explaining any assumptions that you make. [5]

A.3 (a) Starting from the Central Equation dU = TdS − PdV , show that(
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P .

You may use a Maxwell relation without proving it. [3]

(b) For a photon gas, the equation of state can be written

P =
u(T )

3

where u(T ) is the internal energy per unit volume which depends only on tempera-
ture, and u(0) = 0. Show that u = κT 4, where κ is a constant. [2]

A.4 (a) In statistical mechanics, explain what is meant by a microstate and a macrostate. [2]

(b) State the Boltzmann law for the entropy of a macrostate, explaining the meaning
of all the symbols that you use. [3]
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A.5 A particle can occupy one of a set of non-degenerate energy levels {ε1, ε2, ε3, . . .} and is
in contact with a heat reservoir at temperature T .

(a) What is the canonical partition function Z(1) for this particle? [1]

(b) Show that the mean energy of this particle can be written as

ε̄ = − d

dβ
lnZ(1) . [4]

A.6 The Fermi-Dirac distribution is given by

n̄(ε) =
1

eβ(ε−µ) + 1

where n̄(ε) is the expected number of particles in energy level ε at chemical potential µ.

Sketch the form of this distribution in the limit T → 0 and explain why it is implied by
the Pauli Exclusion Principle. [5]
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Section B: Answer AT LEAST ONE of the questions in this
Section

B.1 The question examines your ability to deal with a thermodynamic quantity you haven’t
seen before, the “molar specific non-ideality”. You can assume the van der Waals equation
of state RT = (P + a/v2)(v − b).

The “molar specific non-ideality” of a fluid is defined by y = Pv −RT

(a) Explain why y is a state variable. [2]

(b) What is the value of y for an ideal gas? [2]

(c) Derive expressions for y(P, v) and
(
∂y
∂T

)
v

for a van der Waals fluid. [6]

(d) A van der Waals fluid undergoes an expansion process at constant y. Calculate the
associated cooling coefficient

(
∂T
∂v

)
y
. [4]

(e) The mathematical expression for the cooling coefficient in (d) should become in-
finite for b = 0, but obviously the material cannot undergo an infinite amount of
cooling. With reference to the expression for y, explain what causes this apparent
contradiction. [3]

(f) The y-inversion curve is defined as the line in (T, V ) space for which the cooling
coefficient is zero. Draw this curve, indicating relevant values, and explaining which
regions of the graph are physically reasonable. [3]
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B.2 This question considers a body of liquid at temperature T with constant heat capacity CP .
It is placed in thermal contact with its environment which is at temperature T0 and as-
sumed large enough to have constant temperature. Assume that the equilibration process
is isobaric, but cater for the possibility that the system is either cooling or warming.

(a) Starting from the central equation, dU = TdS−PdV , show that the entropy change
in a system with constant heat capacity, CP , can always be written

dS =
CP
T
dT − V

T
dP

and write down the simplification of this expression for isobaric process. [3]

(b) What are the SI units of CP ? [1]

(c) Calculate the entropy change of the system and of the surroundings. [6]

(d) Show that the entropy change of the universe due to this process can be written in
the form:

∆S = CPf(x) ,

where f(x) = x− ln(1 + x), and determine how x depends on T and T0. [4]

(e) Sketch f(x), and with reference to the sketch, explain what features of the function
f(x) relate to

(i) the Second Law; and

(ii) the Third Law. [7]

B.3 This question considers the thermodynamics of a heat engine.

(a) Write down the Carnot efficiency of a heat engine running between two reservoirs
at temperatures T2 and T1, where T2 > T1. [2]

A heat engine cycle comprises two isotherms (T2 > T1) and two isochores (V2 > V1).

(b) Draw the cycle on a PV diagram, and again on a TS diagram, labelling the processes
and end states, and identifying where heat enters and leaves the system, and where
work is done. [4]

(c) Considering an ideal gas as the working substance, evaluate the heat input and work
done in each process. [4]

(d) Hence evaluate the efficiency of the engine, and show that for very large expansions
it becomes equal to the Carnot efficiency. [6]

(e) If the engine was scaled up to double size, how would this affect the efficiency? [2]

(f) Explain why using an isothermal process in a heat engine leads to low power output.
[2]
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Section C: Answer AT LEAST ONE of the questions in this
Section

C.1 A triangular lattice comprises N regular positions and 2N interstitial positions as shown
in the figure.

regular position
interstitial position

N atoms are arranged on the lattice in such a way that n of them are at interstitial
positions. The potential energy of an atom at an interstitial position is an amount ε
higher than an atom at a regular position. The atoms interact weakly with each other,
and the entire system is in contact with a heat bath at temperature T .

(a) Show that the number of configurations with n atoms at interstitial positions is

Ω(n) =

(
N

n

)(
2N

n

)
. [3]

(b) Using Stirling’s approximation, show that the entropy of the macrostate n can be
written as

S(n) ≈ NkB [c− 2x lnx− (1− x) ln(1− x)− (2− x) ln(2− x)]

where x = n/N , and both n and N are considered to be large. State the value of
the constant c. [6]

(c) By minimising the Helmholtz free energy for the system, show that the equilibrium
value of x is obtained by solving a quadratic equation and given by

x̄ =

√
8eβε + 1− 3

2(eβε − 1)
. [7]

(d) Find the value of x̄ in the T → ∞ limit. Comment on the physical reason for the
value you obtain. [4]
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C.2 A diatomic molecule has translational, rotational and vibrational degrees of freedom. The
vibrational component can be modelled as a one-dimensional quantum harmonic oscillator
with frequency ω. The energy levels of this system are

εn = ~ω
(
n+

1

2

)
where n = 0, 1, 2, . . ..

(a) Show that the canonical partition function for the vibrational degrees of freedom is

Z(1) =
e−

1
2
β~ω

1− e−β~ω
. [4]

(b) Obtain expressions for the mean and the variance of the energy in the vibrational
degrees of freedom as a function of temperature. [9]

(c) Hence, or otherwise, identify a characteristic temperature Tvib at which the molecule
is likely to be in an excited vibrational state. [3]

The energy levels for the rotational states are

ε` =
~2`(`+ 1)

2I

where the angular momentum state ` = 0, 1, 2, . . . has degeneracy 2` + 1, and I is the
moment of inertia of the molecule.

(d) For an oxygen molecule, ω = 2.98× 1014 Hz and I = 1.93× 10−46 kg m2. Determine
the vibrational and rotational states that are typically occupied at room tempera-
ture. [4]
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C.3 The energy levels of a spin 0 boson in two dimensions are

εnx,ny =
~2π2

2mA
(n2

x + n2
y)

where nx and ny are both positive integers, m is the mass of the boson and A is the area
of the container.

(a) Show that the density of states for a single particle is

g(ε) =
Am

2π~2
. [7]

(b) Show that the mean number of bosons in a system of bosons in contact with a heat
bath at temperature T and a particle reservoir at chemical potential µ is given by

N̄ = K

∫ ∞
0

dε
1

eβ(ε−µ) − 1
,

stating the value of the constant K. [3]

(c) Explain why we must have µ < 0. [3]

(d) Show that N̄ diverges as µ→ 0 from below. [4]

(e) Use this result to determine whether this system of particles undergoes Bose-Einstein
condensation. [3]
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