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Section A: Answer ALL the questions in this Section

A.1 Write down the central equation of Thermodynamics in differential form. Use the defi-
nition of Enthalpy to derive the expression for dH and the associated Maxwell relation.

[5]

A.2 The Clausius inequality can be written:

∮
dQ

T
≤ 0

Explain carefully with respect to system and surroundings the thermodynamic meanings
of
∮

, dQ, and T . State which thermodynamic variable the integrand represents, and the
conditions under which the equality applies. [5]

A.3 According to the Schottky equation, the heat capacity is given by cv = b/(T − Tc)2 with
constant b. Describe the physical process occurring at Tc to which the equation may
apply, and whether this formula is consistent with the Third Law. [5]

A.4 A particle’s position is specified by a random variable x that lies in the range 0 ≤ x <
∞. The probability that it is found in the range [x, x + dx] is given by p(x)dx where
p(x) = λe−λx and λ > 0 is a constant.

(a) Show that the distribution p(x) is correctly normalised. [2]

(b) Determine the mean position of the particle. [3]

A.5 A model magnet comprises N = 3 weakly-interacting dipoles. Each has a dipole moment
m, and may be aligned or anti-aligned with an external field with magnitude H. The
energy of a dipole that is aligned with the field is −mH and that of a dipole that is
anti-aligned with the field is +mH.

(a) Specify the distinct energy macrostates that this system has. [2]

(b) Specify the weight of each of the energy macrostates. [3]
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A.6 This question concerns a system of interest in the grand canonical ensemble where the
temperature is T and the chemical potential is µ.

(a) Draw a diagram that illustrates the physical setup of the grand canonical ensemble,
noting which quantities can fluctuate in the system of interest. [3]

(b) Under the assumption that the system of interest comprises weakly-interacting bosons,
state the mean number of particles that occupy a non-degenerate quantum state with
energy ε. [2]
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Section B: Answer ONE of the questions in this Section

B.1 This question concerns the use of different working substances in an engine

(a) Carbon monoxide (CO) and ethene (C2H4) are gases with the same molecular mass:
how do you expect their heat capacities to compare, and why? [3]

A reversible heat engine involves one mole of diatomic ideal gas cycling around four
states labelled a,b,c & d where a is the state of highest pressure. The cycle comprises
two isotherms (a-b, c-d) and two isochores (b-c, d-a). [Note: ‘isochore’ means constant
volume.]

(b) Sketch the cycle on a PV indicator diagram, showing the direction around the cycle
required to generate work. [5]

(c) Calculate the heat and work inputs and outputs in each part of the cycle, in terms of
temperatures Ta, Tc and volumes Va, Vc. [5]

(d) Identify the waste heat, and write an expression for the efficiency of the engine. [4]

(e) Use your expression for efficiency to predict whether using a triatomic ideal gas as
the working fluid would improve the efficiency. [3]

(f) By comparing the ideal efficiency of this engine with the efficiency of a Carnot engine
running between heat reservoirs at Ta and Tc, show that a working fluid with a negative
heat capacity would violate the Second Law. [5]

B.2 This question concerns the relationship between free energy and measurable quantities.

(a) Write down the general definition of the specific molar Helmholtz free energy. [2]

The specific molar Helmholtz Free Energy of a particular fluid is given by

f(T, v) = cRT (1− ln(RT ))−RT ln(v − b)− a

v
+ Td

(b) Identify the dimensions of the constants a, b, c and d. [2]

(c) Write down expressions for the pressure and entropy in terms of f(T, v), and evaluate
them for the fluid above. [6]

(d) Define the heat capacity at constant volume (cv) and the isothermal bulk modulus
(KT ) in terms of partial derivatives of f , and evaluate them for the fluid above. [6]

(e) Sketch the value of KT as a function of v. Hint: identify the zeroes and the limits at [4]
large and small v.

(f) You should find that there are densities for which KT (v) is negative. Explain what
this would imply for the behaviour of a real system described by this free energy. [5]
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Section C: Answer ONE of the questions in this Section

C.1 This question concerns a system with two parallel surfaces, each comprising a lattice of
N sites. Each of these sites may be vacant or accommodate a single atom. The ground
state is one in which all sites on the lower surface are occupied by an atom, and all sites
on the upper surface are vacant. Excited states are created by moving n atoms from the
lower surface to the upper surface. Any atom that is excited from the lower surface can
move to any site on the upper surface, as shown in the figure.

N N

n=0 n=2

The energy of an excited state, relative to that of the ground state, is nε, where ε > 0.
This system is in equilibrium with a heat bath at temperature T .

(a) Show that the weight function Ω(n) for the state with n excited atoms is given by
the binomial coefficient

(
N
n

)
raised to the power ν, specifying the numerical value of

the exponent ν. [3]

(b) Under the assumption that both n and N are large, show that the Helmholtz free
energy as a function of n satisfies

F (n)

N
= xε+ νkBT [x lnx+ (1− x) ln(1− x)] ,

where x = n/N is the fraction of excited atoms. [4]

(c) Hence, or otherwise, show that the equilibrium value of x, as a function of tempera-
ture, is

x̄(T ) =
1

1 + exp
(

ε
νkBT

) . [4]

(d) Sketch the form of the equilibrium fraction of excited atoms, x̄(T ), as a function of
T , noting the limiting values as T → 0 and T →∞. [4]

(e) By appealing to energy-entropy competition, explain why a state with x̄(T ) > 1
2

is
not an equilibrium state. [3]

We now consider two systems of the same size that are both prepared at the same temper-
ature, but are not initially in contact with each other. They are then placed in thermal
contact, and allowed to exchange energy (in the form of heat) and particles between them
until they reach equilibrium.

(f) Calculate the change in the entropy of the two systems when they are brought into
in contact. [4]

(g) Explain this entropy change by appealing to an argument based on whether or not
the atoms are distinguishable. [3]
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C.2 The rotational degrees of freedom of a diatomic molecule can be mod-
elled as a thin rigid rod that is free to rotate about its centre of mass
whilst the position of the centre of mass remains fixed.
The quantum mechanical state of the system is determined by two
quantum numbers, ` and m, which satisfy ` = 0, 1, 2, . . . and m =
−`,−`+ 1, . . . , `− 1, `.

The energy of the state (`,m) is

ε(`,m) =
~2

2I
`(`+ 1) ,

where I is the moment of inertia of the rod. The rod is in thermal equilibrium with a
heat bath at temperature T .

(a) State the general definition of the canonical partition function Z. [2]

(b) Show that for the rigid rod, we have that

Z =
∞∑
`=0

(2`+ 1)e−
β~2
2I

`(`+1) ,

where β = 1
kBT

. [3]

(c) By replacing the sum over ` with an integral over the range 0 ≤ ` <∞, show that Z
can be approximated as

Z ≈ AkBT ,

specifying the value of the constant A. [4]

(d) Hence, or otherwise, determine the equilibrium value of the mean energy of the rod. [3]

(e) Show that the result obtained in part (d) is compatible with the equipartition theorem
at high temperatures, but incompatible with the third law of thermodynamics at low
temperatures. [4]

(f) Explain why, at low temperatures, we can justify truncating the sum in part (b) at
` = 1. [3]

(g) Show that this manipulation leads to a result that is compatible with the third law
of thermodynamics. [6]
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