# RETURN OD

# . Thermodynamics

- Black body radiation as Thermodynamics
- Stefan's T<sup>4</sup> Law
- G=0 for cavity radiation
- Planck's Energy distribution
- Existence proof of quantum mechanics

## Ideal Gas Phase diagram



- A surface in 3D P,V,T space
- Given any two state variables, EoS gives third.

Phase diagram, (P,T), (V,T) would be ...

## Ideal Gas Phase diagram



- A surface in 3D P,V,T space
- Given any two state variables, EoS gives third.

Phase diagram, (P,T), (V,T) would be ... a square with "Gas" written on it.

PV = nRT doesn't tell us the energy (or H, F, G).

- Classical KE:  $\frac{k_B T}{2}$  for each DoF
- Monatomic gas has 3 DoF:  $u = \frac{3RT}{2}$
- Diatomic gas has 5 DoF:  $u = \frac{5RT}{2}$

Real gas, depends on temperature and quantum rotors/vibrations

Recall  $N_A k_B = R$ 

- Are not analytic functions.
- Are not continuous functions
- Are not differentiable (at phase transitions)

## Water Equation of state



Equation of state for water

- A surface in 3D P,V,T space
- Given any two state variables, EoS gives third.
- Isenthalps, isentropes etc are lines on the surface.
- Lines separate phase(s).
- Magnetic phases may extend to a surface in higher dimension.

## Water and Steel Phase Diagrams - Different axes



- A 2D graph labelling which phases exist Lines are Phase Boundaries: Boiling, melting etc.
- Magnetic phases may extend phase diagram to higher dimension.
- More than one component composition axis Melting, Solubility limits, two phases
- Stable phase has lowest Free Energy

- Equation of state : Plane in space on thermodynamic coordinates.
- Each Phase: Smooth Plane in space.
- Between Phases: EoS is discontinuous
- Stable Phase
  Lowest G=U-TS+PV
  High T favours high entropy phases.
  High P favours high density phases.
- Continuation of EoS beyond transition: Metastable Phase
- Phase Diagram: 2D projection of EoS

# Notes on Equilibrium and Phase diagrams:

#### • Equilibrium condition

Minimise free energy appropriate to boundary condition. F(V,T) allows phase coexistence, G(P,T)does not.

#### Conjugate variables

P,V are conjugate (appear together in free energy expressions). If  $\partial P/\partial V > 0$  free energy can be reduced by volume collapse. Negative bulk modulus or heat capacity are not allowed.

#### Triple point

Ice, water and water vapour coexist at a unique T and P.

#### Sublimation Line

Solid-to-vapour transition, e.g "dry ice", (solid CO<sub>2</sub>)

#### Critical point

Unique T,P point where dense gas is indistinguishable from liquid.

#### Phase transition Line

Entropy, Volume are discontinuous here.

#### • "Controlled" processes

Iso-X-ic process is a line on the phase surface

Graeme Ackland

Two parts of a **System** in equilibrium: constant T and P throughout Mechanical (P) and Thermal (T) equilibrium Relevant potential is Gibbs.

dG=VdP-SdT

System in mechanical and thermal equilibium minimises its Gibbs free energy. Irreversible processes have dG < 0



## Thermodynamically Impossible Properties

**Negative Bulk Modulus:**  $K_S = -V \left(\frac{\partial P}{\partial V}\right)_s$ System with constant S, V boundaries. Two parts, A&B. A grows by  $\Delta V$ , so B shrinks by  $\Delta V$ ;

$$\Delta U_{A} = \left(\frac{\partial U}{\partial V}\right)_{s} \Delta V + \left(\frac{\partial^{2} U}{\partial V^{2}}\right)_{s} \frac{(\Delta V)^{2}}{2} + O(V^{3})$$
$$\Delta U_{B} = -\left(\frac{\partial U}{\partial V}\right)_{s} \Delta V + \left(\frac{\partial^{2} U}{\partial V^{2}}\right)_{s} \frac{(\Delta V)^{2}}{2} - O(V^{3})$$
$$U = \Delta U_{B} + \Delta U_{A} = \left(\frac{\partial^{2} U}{\partial V^{2}}\right)_{s} (\Delta V)^{2} = -V \left(\frac{\partial P}{\partial V}\right)_{s} \frac{(\Delta V)^{2}}{V}$$

Using  $\left(\frac{\partial U}{\partial V}\right)_s = -P$  from central equation dU=TdS-PdV.

Second Law: U is minimised at eq'm, so dU > 0, V and  $(\Delta V)^2$  are positive. So

 $K_s = V\Delta U/\Delta V^2 > 0$ , the adiabatic bulk modulus is positive.

Λ

#### **Negative Specific Heat**

Same argument for entropy at constant volume, dS.

$$dU = dU_B + dU_A = \left(\frac{\partial^2 U}{\partial S^2}\right)_V (\Delta S)^2 = \frac{1}{T} \left(\frac{\partial T}{\partial S}\right)_V T(\Delta S)^2 = \frac{T(\Delta S)^2}{c_V}$$

Positive dU, T and  $(\Delta S)^2$  leads to  $c_v > 0$ .

# The equilibrium condition for coexisting phases

Consider two coexisting phases  $G = g_1 M_1 + g_2 M_2$ . Mass conserved  $dM_1 = -dM_2$ .



Minimise G at equilibrium.  $dG = g_1 dM_1 + g_2 \overline{dM_2 = 0}$ 

Requires:  $g_1 = g_2$ 

Specific Gibbs free energies are equal for coexisting phases

If  $g_1 > g_2$ , Second law allows transfer of material from  $1 \rightarrow 2$ .

Three variables (P,V,T), two constraints (EoS and  $g_1 = g_2$ ) Phase coexistence is a line in P,T.

# The Helmholtz function: equilibrium in fixed volume

Equilibrium for system at constant T, V: minimise F = U - TS.

$$dF = PdV - SdT = 0$$

Subject to constraint:

$$V = v_1 M_1 + v_2 M_2$$

F minimised by a mixture of phases The slope of common tangent is the coexistence pressure

$$\left(\frac{\partial F}{\partial V}\right)_T = P$$



# The Helmholtz function: equilibrium in fixed volume

Coexisting phases 1&2:  $g_1 = g_2$ Different specific Helmholtz:  $f_1 \neq f_2$ 





Different densities,  $v_1 \neq v_2$ Total volume:  $V = N_1v_1 + N_2v_2$  (lever rule). Compression happens as material transforms into denser phase, Isothermal (dT = 0) compressibility while phases coexist (dG = 0).

$$dP = (dG + SdT)/V = 0$$

Material can compress with no change in pressure. Infinite compressibility!

Van der Waals EoS can be written:

$$Pv^3 - (Pb + RT)v^2 + av - ab = 0$$

- Cubic v(P, T) multivalued
- "Critical Point": three roots coincide.
- For  $T > T_c$ , only one possible v(P, T)



Exercise: show vdW Critical Point  $V_c = 3b$ ,  $P_c = \frac{a}{27b^2}$ , and  $T_c = \frac{8a}{27Rb}$ 

Van der Waals equation in terms of critical point parameters

$$\left(P/P_c + \frac{3}{(V/V_c)^2}\right) \left(3\frac{V}{V_c} - 1\right) = 8\frac{T}{T_c} \qquad \text{VdW's Eqn of state}$$

•  $(dP/dV)_T > 0$  for  $T < T_c$  at some volumes.

- Accessed with fixed T,V boundary conditions ("Helmholtz").
- Mechanically unstable,: fluid breaks into two phases with different densities.
- Fixed V: Minimise the Helmholtz Free Energy.

# Phase coexistence isotherm (Maxwell's Construction)

- Dotted line is unstable vdW isotherm.
- Phase coexistence is a straight line connecting the denser "liquid" less dense "vapour" phase.
- Gibbs free energy of each phase is equal.

$$\Delta g = \int v dP_T = 0$$

• Maxwell construction: Pink and purple - equal areas.



## Phases and the PVT surface

Compare vdW and real phase diagram

- vdW has liquid and gas phases, critical point.
- Homogeneous: no solid phase, melt line or triple point.
- A real substance compressed slowly at constant temperature...
- a) vapour
- b) coexistence
- c) liquid
- d) coexistence
- e) solid
- f) coexistence
- g) high pressure solid goto (f)





nature

Ross Howie, Thermodynamics 2008, cover of Nature 2015.

# Projections of Equation of state

*PT* plane ("Gibbs") phase boundaries.*VT* plane ("Helmholtz") shows phase coexistence.*PV* plane ("indicator") can show isotherms.

