
...Thermodynamics

Third Law of Thermodynamics

Entropy, and its derivatives, go to zero as T → 0.

Zero heat capacity, thermal expansion.

Entropy as counting states.

“T → 0” means thermal energy is close to quantum energy.

diatomic ideal gas:

Entropy as information
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Gibbs phase rule

How much information is needed to
specify system?

...equivalently...

How many independent variables (F)
does a system have?

F − 2 = C − NP

C: Chemical species - reactions

NP : Number of phases present
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What must be given to define the state: Gibbs phase rule

F=C+2-NP

Single phase water: F = 1+2-1 =2. P and T must be specified.

Ice/water mix F = 1+2-2 =1. Specifying P defines T.

Triple point F = 1+2-3. no freedom, unique P,T.

Critical point No freedom, unique P,T =⇒ P=3. (!)

Gaseous O2, H2 and H2O: F = 3+2-1.
Leaves four d.o.f, e.g. T, P, NO2 NH2

...+reaction 1
2O2 + H2 ⇔ H2O F = 2+2-1,

Leaves three d.o.f.
(Assuming known reaction constant K, q.v.).
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Paul Ehrenfest (1880-1933)
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Ehrenfest’s order of phase transitions

g1 = g2

First order: discontinuous change of state variables (e.g. s or v)

∂g1
∂T
6= ∂g2
∂T

Second order: continuous change of state variables, but discontinuous
derivatives (e.g. cv , K , β)

∂g1
∂T

=
∂g2
∂T

∂2g1
∂T 2

6= ∂2g2
∂T 2

Third order: continuous change of state variables and derivatives.
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Discontinuous ≡ 1st order transitions

Isothermal process traverse
X’Y’ At the phase boundary.

g1 = g2 always . . .

For first order, derivatives change...

−
(
∂g1
∂T

)
P

6= −
(
∂g2
∂T

)
P(

∂g1
∂P

)
T

6=
(
∂g2
∂P

)
T

s1 6= s2 and v1 6= v2

Discontinuous transition ≡ 1st order
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Second derivatives?

Isobaric Heat Capacity T
(
∂s
∂T

)
P

= T
(
∂2g
∂T 2

)
P

Thermal Expansivity 1
V

(
∂V
∂T

)
P

= 1
V

(
∂2g

∂TP∂PT

)
Isothermal Compressibility −1

V

(
∂V
∂P

)
T

= −1
V

(
∂2g
∂P2

)
T
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The ‘discontinuities’ at continuous phase changes

In a second order transition

−
(
∂g1
∂T

)
P

= −
(
∂g2
∂T

)
P

and

(
∂g1
∂P

)
T

=

(
∂g2
∂P

)
T

∆S = 0 means no latent heat. ∆V = 0 means no volume change.

S and V are anyway related by
(
∂s
∂P

)
T

Maxwell
= −

(
∂v
∂T

)
P

No latent heat or volume change: same internal energy dU = TdS − PdV

Clausius Clapeyron = 0/0.
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What sort of thing?

Two types of transition look like “second order”

“Critical fluctuation” is where regions of the system fluctuate into the
other phase in an uncorrelated way.
e.g. ferromagnet.

“Coexistence” is where one phase the system is effectively two-component.
e.g. Bose condensate.
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The Ehrenfest equations

Equivalent of Clausius-Clapeyron for second order boundary.
Consider entropy at points (T ,P) and (T + dT ,P + dP) on phase boundary.
No change in s or v .

at A s1(T ,P) = s2(T ,P)

at B s1(T + dT ,P + dP) = s2(T + dT ,P + dP)

use a Taylor expansion on B(
∂s1
∂T

)
P

dT +

(
∂s1
∂P

)
T

dP =

(
∂s2
∂T

)
P

dT +

(
∂s2
∂P

)
T

dP

Identify heat capacity cP , thermal expansion β: “first Ehrenfest equation”:(
dP

dT

)
pb

=
cP,1 − cP,2

Tv(β1 − β2)
=

CP,1 − CP,2

TV (β1 − β2)
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Second Ehrenfest equation

“Second Ehrenfest equation”(
dP

dT

)
pb

=
β2 − β1
κ2 − κ1

Similar derivation starting from v1 = v2
Slope of transition line relates to ∆β, ∆κ, ∆CP .
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Fluctuations, Instability and Scaling Laws

In critical region close to the transition, ±∆Tcrit around Tc

e.g. Heat Capacity

CV ∝ (T − TC )−α

e.g. correlations between magnetic spins

< Si .Sj >∝ r−ν

Power Law dependence implies there is no characteristic scale.
Universality: conjecture that α, ν are independent of material.
In Economics and Ecology, as in Physics, forthcoming transitions often
characterized by big fluctuations.
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Giraffe (Phase coexistence)

Animal skin patterns
come from phase
separation between
pigmented and
non-pigmented cells.
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Percolation: cutting a chicken wire

How many random bonds give a
connection?
Imagine links are wires
- discontunity in conductivity..

EM Quiz: infinite square/cubic lattice of

resistors, what is the resistance between

opposite corners?
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Ferromagnet

Lecture 16 November 12, 2018 15 / 21



Ising Ferromagnet

U = ε
∑
i ,j

σiσj

Equation of state: M = (T − Tc)β and

χ = dM
dB =

(
C

T−Tc

)γ
MACRO: zero magnetisation to finite
magnetisation

MICRO: transition from aligned spins to
randomly oriented spins.(
∂M
∂T

)
B,P

massive near transition.
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Liquid Helium

https://www.youtube.com/watch?v=2Z6UJbwxBZI
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Liquid Helium

At Tλ = 2.2 K, on cooling (He I) to
“superfluid” (He II)

Only for 4He (Bosons)

Finite fraction of atoms in same
(ground) quantum state (S=0).

He II phase: no viscosity.

Peak in CP at transition.

Looks like a λ, hence Tλ.

Heat capacity continuous: third order
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Superconductivity

Heat capacity of In: no
singularity

No latent heat

2nd order Transition,

Below Tc = 3.4K electrical resistance is
zero.

“Two component model”

Electrons couple to form “Cooper
pairs” (bosons).

Finite fraction of electrons (N1) in
ground state (S=0)

Why is the average R zero?
Consider resistors in parallel:

1

R
=

N1

R1
+

N2

R2

R1 = 0 =⇒ R = 0
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Superconductivity suppressed by

High temperature

High field

High current

Type I excludes all magnetic
fields

Type II allows some magnetic
field
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