
...Thermodynamics

If Clausius Clapeyron fails(
dP

dT

)
pb

=
l

T (v2 − v1)
= 0/0

Second order phase transition (∆S ,∆v = 0)(
dP

dT

)
pb

=
cP,1 − cP,2

Tv(β1 − β2)

Two phases intermingled

Ferromagnet (Excess “spin-up” atoms)

Superfluid Helium (Many particles in quantum ground state)

Superconductor (Many “paired” electrons in same quantum state)
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Open systems

How to deal with particle exchange?
Extra particles N → N + dN
Energy gained by adding a particle?

dU = TdS − PdV + µdN with µ =
(∂U
∂N

)
S ,V

Mathematically µdN equivalent to including an extra type of work.
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Chemical Potential µ and thermodynamic potentials

Definitions unchanged

F = U − TS

H = U + PV ,

G = H − TS = F + PV

Therefore dG = −SdT + VdP + µdN etc.

µ =
(∂U
∂N

)
S ,V

=
(∂F
∂N

)
T ,V

=
(∂G
∂N

)
T ,P

Also, for many species

µi =
( ∂U
∂Ni

)
S,V ,Nj 6=i

=
( ∂F
∂Ni

)
T ,V ,Nj 6=i

=
( ∂G
∂Ni

)
P,T ,Nj 6=i

µ is useful with ANY boundary condition
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Chemical potential and Gibbs Free Energy

Consider the two ways to write the free energy of αN particles:

⇒ αG (P,T ,N) = G (P,T , αN)

Take the derivative of both sides with respect to α:

G =

(
∂G (P,T , αN)

∂α

)
P,T

= N

(
∂G (P,T , αN)

∂(αN)

)
P,T

=
N

α

(
∂G (P,T , αN)

∂N

)
P,T

= N

(
∂G (P,T ,N)

∂N

)
P,T

G = Nµ for a pure substance

Lecture 17 November 13, 2019 4 / 20



State functions in terms of µ

G = Nµ for a pure substance

The chemical potential for one species is the specific Gibbs free energy!
µ = G (T ,P,N)/N we find that:

dµ = −sdT + vdP

µ can be written as a function of P and T only for a pure substance.

s = −(∂µ/∂T )p,N v = (∂µ/∂p)T ,N ; for a pure substance

Be careful with extensive (∝ N) and intensive quantities.
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A closed system equilibrates

Closed system, two parts initially out of equilibrium.

Va

Ua

Na
Vb

Ub

Nb

Conservation Laws: dUA + dUB = 0, dNA + dNB = 0, dVA + dVB = 0.
Second law: dSA + dSB > 0

dS(U,V ,N) =
dU

T
+

P

T
dV − µ

T
dN

Which, when applied to the two-part system gives( 1

TA
− 1

TB

)
dUA +

(PA

TA
− PB

TB

)
dVA −

(µA
TA
− µB

TB

)
dNA > 0

,

Hold that thought ...
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Flow of heat and particles

From previous slide ...

Va

Ua

Na
Vb

Ub

Nb

( 1

TA
− 1

TB

)
dUA +

(PA

TA
− PB

TB

)
dVA −

(µA
TA
− µB

TB

)
dNA > 0

At equilibrium TA = TB , PA = PB and µA = µB .

energy flows from hot to cold until TA = TB .

volume moves from high to low pressure (for equal T)

particles flow from high to low chemical potential (for equal T).

Particles (mass) flow along gradients of the chemical potential .
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Phase separation in Planets

Chemical potential includes gravity: µ = u − Ts + Pv + mgrh.
Heavy atoms fall to the bottom: can be drawn up if soluble (u)
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Chemical Potential for single component ideal gas

dG = VdP − SdT + µdN

For constant N, integrating g from T=0, P=P0 , we get

dµ = dg =

(
d(G/N)

dT

)
P,N

dT +

(
d(G/N)

dP

)
T ,N

dP

= (S/N)dT + (V /N)dP = cPdT +
RT

P
dP

µ = cPT + RT ln(P/P0)

Note dependence on P (=nRT/V ):
adding more stuff (n) at fixed (V ,T ) increases µ
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Stating the obvious

Non-interacting objects in the same system can be treated as independent
ideal gases, thanks to ...

Dalton’s Law
Total pressure is the sum of partial pressures

P =
∑
i

pi

Raoult’s Law

Partial pressure is proportional to concentration

piV = NiRT

e.g. dilute chemicals in solution, photons in a cavity etc.
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Entropy/free energy of very dilute system

Recall the entropy of an ideal gas

S − S0 = cp lnT − R lnP

For multiple components i

S =
∑

Ni si = cV lnT − R
∑

(pi/P) ln pi

So at very low pi → 0, pressure term is

0× ln 0

Contribution to entropy is zero, but per particle it is near infinite.
Systems can always lower their Gibbs free energy by having a tiny amount
of a component.
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Solubility: Find concentration, cx , of x at equilibrium?

Boundary conditions: T0,P0, µ
(0)
x ,

Chemistry: specific enthalpy of solution δhi .

Consider system in Eqm with boundary:

T = T0, µ = µ
(0)
x , and Raoult’s Law

px = P0Nx/N = cxP0

with ideal gas entropy:

µ
(0)
x = µx = h − Ts = δh + RT ln px/P0

Rearranging: cx = exp
[
(µ

(0)
x − δh)/RT

]
If insoluble: δh� µ

(0)
x there is still some x in solution,

If soluble, δh < µ
(0)
x (x is “soluble”) concentration larger than 1 (not ideal gas).
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Chemistry

“Do I really have to do all these?”
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Thermodynamics in Chemistry

Molecules react to form other molecules.
A chemical potential can be defined for each.
dU = TdS − PdV +

∑
i µidNi

dG = −SdT + VdP +
∑

i µidNi

Total Gibbs, G is also the sum of the chemical potentials

G =
∑
i

µiNi =⇒ dG =
∑
i

Nidµi + µidNi

Equating these expressions for dG yields the Gibbs-Duhem relation:∑
i

Ni dµi = −S dT + V dp

This gives balance of concentration of components i
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Chemical equilibrium of a reacting system

Closed system, fixed (T ,P) boundary
Minimise G (set dG = 0)

dG =
∑
i

µidNi = 0 closed system at equilibrium, fixed T

Ni are all internal degrees of freedom.
dNi are constrained by the reaction equation

∑
i bidNi = 0

e.g. H2+1
2O2 → H2O leads to dNH2 + 1

2dNO2 − dNH2O = 0

Combining minimisation of G and constraint: chemical process equilibrium:∑
i

biµi = 0

e.g. µH2 + 1
2µO2 = µH2O

At Eqm, chemical potential of reagents and products are equal
If we start with “too high” concentration a reagent, it will react away.

Lecture 17 November 13, 2019 15 / 20



Reaction between ideal gases at fixed T, N

Dilute solution ≈ Ideal Gas =
“Ideal Solution”.

Ideal gas mixture: P =
∑

pi

Raoult’s Law: piV = NiRT

dG = V
∑
i

dpi − SdT +
∑
i

µidNi

For isothermal reaction (fixed T boundary)

dG ≡
∑
i

dµi =
∑
i

RT

pi
dpi

Get change in µi with pressure by integrating from reference state µ0i ,

µi = µ0i + RT ln[pi/p
0
i ]

Substituting into equilibrium condition
∑

biµi = 0∑
i

bi (µi
0 + RT ln[pi/p

0
i ]) = 0
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Equilibrium constant (Generalization of solubility)

...From previous ∑
i

bi (µ
0
i + RT ln[pi/p

0
i ]) = 0

Each reaction has an “Equilibrium constant” (which depends on T).

ln(K ) ≡ ln

[∏
i

(pi/p0)bi

]
= −

∑
i biµ

0
i

RT

=⇒ K (T ) ≡
∏
i

(pi/p0)bi = exp[−
∑

i biµ
0
i

RT
] (=0 @ reference state)

At low temperature (compared with chemical energy)

TS is negligible, so µ equals Enthalpy∑
i biµi becomes the enthalpy of reaction.

K(T) looks like the Boltzmann factor exp−∆E/kT .
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Chemistry made easy

Need only measure Chemical Potential µi for each component (N
measurements), not K for every possible reaction (N! measurements)
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The Chemical Potential is ...

The extra energy from adding a particle dU = TdS − PdV + µdN

The specific Gibbs µ = g for a pure substance.

The quantity which drives particle flow.

The quantity which defines chemical equilibrium

All of the above!
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