RETURN OD

..Thermodynamics

Engines convert (some) Heat to Work Second Law of thermodynamics

CLAUSIUS: Heat can't flow from colder to hotter KELVIN/PLANCK: Cannot convert ALL heat to work CARNOT: Best possible heat engine between T_1 and T_2 is...

- a) Reversible
- b) Has all heat transfer at exactly T_1 and T_2 .
- i.e. Reversible isothermal/adiabatic Carnot cycle

Carnot cycle is not generally useful: isothermal = slow, so very low power

(Finn: 4.7, 4.8, 4.9, 4.10)

- Carnot Efficiency
- Thermodynamic temperature scale.
- Carnot devices.
- A (nearly) real engine.

Graeme Ackland

Lecture 5: EFFICIENCY OF ENGINES

October 1, 2018 3 / 17

Carnot Engine efficiency

- Carnot efficiency is independent of working substance.
- Heat flows (Q₁ and Q₂) are determined solely by the reservoir temperatures (T₁ and T₂).
- Can define a temperature scale based on thermodynamic principles.

Is it consistent with ideal gas scale? ... consider ideal gas as a working substance.

Heat flow and work done in a Ideal gas Carnot cycle

• Isothermal expansion "ab": Ideal gas U = U(T); First Law gives $dU = 0 = d^{2}q - PdV \implies$,

$$q_{ab} = \int_{Va}^{Vb} PdV = nRT_1 \int_{Va}^{Vb} \frac{dV}{V} = nRT_1 \ln(\frac{V_b}{V_a}), \text{ which is positive.}$$

• Similarly, isothermal compression "cd":

$$q_{cd} = \int_{Vc}^{Vd} PdV = nRT_2 \int_{Vc}^{Vd} \frac{dV}{V} = nRT_2 \ln(\frac{V_d}{V_c}), \text{ which is negative.}$$

Heat flows using "engine" sign convention. $Q_1 = q_{ab}$; $Q_2 = -q_{cd}$.

$$\frac{Q_2}{Q_1} = \frac{nRT_2\ln(V_c/V_d)}{nRT_1\ln(V_b/V_a)} = \frac{T_2}{T_1}\frac{\ln(V_c/V_d)}{\ln(V_b/V_a)}$$

$$\frac{Q_2}{Q_1} = \frac{nRT_2\ln(V_c/V_d)}{nRT_1\ln(V_b/V_a)} = \frac{T_2}{T_1}\frac{\ln(V_c/V_d)}{\ln(V_b/V_a)}$$

Adiabats

$$T_1 V_b^{\gamma - 1} = T_2 V_c^{\gamma - 1}$$
 and $T_1 V_a^{\gamma - 1} = T_2 V_d^{\gamma - 1}$

So $V_b/V_a = V_c/V_d \implies \ln(V_b/V_a) = \ln(V_c/V_d)$. Substitution of this result in the formula above gives

$$\frac{Q_2}{Q_1} = \frac{T_2}{T_1}$$

Conclusion

Defining thermodynamic temperature T_{th} via

$$rac{T_{th2}}{T_{th1}} = rac{Q_2}{Q_1}$$

makes the thermodynamic temperature scale the same as the ideal gas temperature scale. Henceforth we denote temperatures on both scales by T, measured in kelvin.

Graeme Ackland

Lecture 5: EFFICIENCY OF ENGINES

October 1, 2018 6 / 17

Can define ideal efficiency via of the temperatures of the reservoirs. Efficiency is always *defined* by (what you want out)/(what you put in). So

- For an *Engine* you put heat in and get work out.
- For a *Refrigerator*, put work in, take heat out (from the cold region).
- For a *Heat Pump* put work in, get heat out (into the warm region).

There's no d in: refri d gerator

Engine, efficiency Refrigerator, coefficient of performance Heat pump efficiency:

$$\eta^R = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2}$$
$$\eta^{HP} = \frac{Q_1}{W} = \frac{Q_1}{Q_1 - Q_2}$$

Carnot only:
$$\eta_C = 1 - \frac{T_2}{T_1}$$
; $\eta_C^{HP} = \frac{T_1}{T_1 - T_2}$ $\eta_C^R = \frac{T_2}{T_1 - T_2}$

Lecture 5: EFFICIENCY OF ENGINES

World's biggest Fridge Magnet?

CERN uses about 1/3rd as much energy as Geneva. Of which.. LHC cryogenics 27.5 MW LHC experiments 22 MW Heat Pump and Refrigerator: same device, different purpose. Refrigerator, coefficient of performance η^R :

$$\eta^R = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2} \qquad \eta^R_C = \frac{T_2}{T_1 - T_2}$$

Heat pump, heat pump efficiency $\eta^{\rm HP}$:

$$\eta^{HP} = \frac{Q_1}{W} = \frac{Q_1}{Q_1 - Q_2} \qquad \eta^{HP}_C = \frac{T_1}{T_1 - T_2}$$

QUESTION : Explain (using the engineering definition of the efficiency of a heat pump) why heat pumps are best used to produce domestic **background** heating.

Steam engine works with a liquid+vapour mixture, which combines big volume expansion (steam) and easy to pump/heat (water)

The Otto cycle: a "nearly real" engine

- Simplified two-stroke petrol engine.
- Assume single working substance with "external" heating
- Two adiabats and two isochores.
- Heat exchange takes place in the isochoric processes (i.e. not isothermal)

 a – b: reversible adiabatic compression (Piston moves in)

$$T_aV_1^{\gamma-1}=T_bV_2^{\gamma-1}$$

b – c: heat added (actually, combustion) at constant volume.

$$Q_1 = C_V(T_c - T_b)$$

c – d: reversible adiabatic expansion (the "power stroke": piston moves out)

$$T_d V_1^{\gamma-1} = T_c V_2^{\gamma-1}$$

 d – a: heat rejected (actually exhaust) at constant volume.

$$Q_2 = C_V(T_d - T_a)$$

Lecture 5: EFFICIENCY OF ENGINES

The efficiency η for the engine has to be specified in terms of Q_1 and Q_2 . From (4) and (2):

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_d - T_a}{T_c - T_b}$$

To get more insight into the factors controlling efficiency use (1) and (3) to give:

$$\eta = 1 - \left(rac{V_2}{V_1}
ight)^{\gamma - 1} = 1 - rac{1}{r_c^{\gamma - 1}}$$

where $r_c = V_1/V_2$ is called the compression ratio. If r_c is \sim 5, $\eta \sim$ 50%. Other considerations mean real engines are well below this.

Four-stroke engines have exhaust and intake stages between da and ab.

Real engines are always imperfect.

Lossy engine,

 $W
ightarrow W - Q_F$ Frictional loss $Q_1
ightarrow Q_1 + Q_L$ Heat loss

Kelvin-Planck: $Q_F > 0$ Clausius $Q_L > 0$

$$\eta = \frac{W - Q_F}{Q_1 + Q_L} < \frac{W}{Q_1}$$

Efficiency is always reduced.

Patent for the patent clerk

Einstein and Szilard patent a fridge. No moving parts. No work input. Butane as working fluid. Ammonia/water mixture pump. Energy supplied as heat to Ammonia/water