... Thermodynamics

Heat can be converted to work

Reversible Carnot Engines

Carnot Heat Flows proportional to Temperatures

Second Law stated in terms of efficiency

Real Engine cycles: Otto, Sterling, Brayton
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Three body heat exchange

Clausius: "What about heat transfers in an arbitrary cyclic process?”

hot | hot |
reservoir reservoir
. T T2
Carnot refrigerators A and B
and Engine E. ) \\Ql Q% )
Heat reservoirs Ty, T1, Tz Qia 4 QB
“Engine”*—’W
Adjust Heat flow to hot
reservoirs A B
(Q1 = Qua; Q= Q2a) Ve Ve
Heat flow to cold reservoir Wa Ws
Qoa + Qos — Qo.
(expect to be -ve) Qoa | Qo | Qos
cold reservoir To
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Clausius Inequality

@ System: both fridges and the engine

@ Total work done: W — (W4 + Wp).

@ No net heat flows to HOT reservoirs.

o (Qua+ Qo) — Qo= W — (Wu + Wpg) (1st Law).
@ Kelvin-Planck violated unless...

W < Wy + Wg and so Qoa + Qog — Qo <0

@ From the Carnot refrigerator efficiencies we have...
Qu_ T - To. imi - Ty
dh =7 = Qoa = @1 X T similarly Qo = Q2 % T

@ Thus in terms of the heat entering the cold reservoir,

(@ @ Q & G
QOA+QOB—QO—<T1+T2>T0—QOSO—>7_1+.,_2—T0§0
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Heat flows to working substance

Again...

Q Q Q
$rg-f<o

So far we considered heat flows Q; for the engines and refrigerators.

Now consider heat inputs g; to the working substance of the engine.
The engine absorbs heat g1 = Q1 from the hot reservoirs, and returns heat
to the cold reservoir, so there is a change of sign: go = —Qp.

qo q1 q2
To T T
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Generalised Clausius Inequality

In general

o If the number of engines and refrigerators is arbitrary,

qi
2 <0
—~ T; —

1
Where T; are from the reservoirs, not the temperature of the system.

@ In the limit of g — 0, the summation may be replaced by an integral:

o
/Tq <0, Clausius inequality

T is temperature of surroundings, not the system.
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Clausius for Reversible cycles.

Reversible: system in equilibrium with surroundings

Tsystem = I'reservoirs

L . dgq
Clausius inequality: [ <2 <0
but since all processes can also be reversed... f 7" >0

So for reversible cycles,

dqr

T = 0, reversible cycle only

Note that now T is the same for both the surroundings and the system.
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Entropy - an existence proof from a contour integral

Consider a reversible cycle i to f
then back to 7,

Reversibility means the equality sign
in the Clausius inequality applies:

dar _ ["dar  ["dar _
T T T

1

0

from which

/f d‘qR_/f dar
ilpath 1 T i|path 2 T

Because the value of the integral is path-independent,

v

dqr

-

differential of some state function, we call it entropy S:
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Entropy - a new state variable

The integral is path-independent.

is an exact differential of some state function,

We call it entropy S:

f f
d
q"":/ dS =S~ S;=AS
i T i
@ This equation defines changes in entropy.
@ It doesn't give a physical clue to what entropy means microscopically.
@ It doesn't hint at what S = 0 means.
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The Principle of Increasing Entropy

Reconsider the existence proof for entropy if one process (i to f) is irreversible.

The Clausius inequality leads to )
[ o

from which
fdq _ f@:%_si

T - T

i

For an irreversible process, S — 5;, is greater than the integration of
infinitesimal contributions:

heat supplied from the surroundings Fdqg
. = — < dSsystem
temperature of the surroundings i T
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Example calculation of an entropy ch

Water at 20°C is placed in thermal contact with a heat reservoir at 100°C;
heated irreversibly at constant pressure to an equilibrium state at 100°C.

@ To calculate the entropy change of the water (the “system”)
consider an alternative reversible process. 20°¢  00C

@ Use as the “surroundings” a series of heat reservoirs each at e
slightly higher temperature from T; to Tr.

100°C 100°C

@ Each intermediate stage in the alternative process is the
reversible transfer of heat dQ = CpdT from a reservoir at the
temperature of the water.

@ The change in entropy of the water is dS = CpdT/T. l ﬂ

@ For the complete process, the change in entropy of the water is
373

AS®"® = CpIn 38 = Cp x 0.24141.
@ The change in entropy for the system in an irreversible process H L

between equilibrium states can be calculated using an equivalent L
reversible process.
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. entropy change in system

ASSYS — CP In ? = CP X 024141 -

N M
Calculate change in entropy ASSYRR of the surroundings

100°C

100°C 100°C

Actual surroundings: a reservoir at 100°C, delivers heat :

CP(Tf — T,) = Cp(373 — 293) = Cp x 80

heat via a series of reservoirs each slightly cooler than the
previous. The change in entropy of the surroundings is thus
—Cp(373 — 293)/373 = —Cp x 0.21448.

Again, consider an alternative reversible process, delivering l {

note that entropy increases

ASTOT — ASSYS + ASSURR — (0.02693Cp > 0
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Changes of entropy of thermally isolated systems in

adiabatic processes

A thermally isolated system exchanges no heat with the surroundings.

So, for an irreversible process inside a thermally isolated system

dS >0 (— Sf— Si = AS > 0 for a process)

It also follows that for a finite reversible adiabatic process AS = 0.
Conclusion:

The entropy of a thermally isolated system increases in any irre-
versible process and is unaltered in a reversible process.

This is the principle of increasing entropy.
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Equivalent statements of Second Law

@ Heat cannot flow from a cooler to a hotter reservoir.
@ Heat cannot be 100% converted to Work
© Reversible cycles are the most efficient engines possible

@ Entropy cannot decrease

“Heat is the lowest form of energy”
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Summary so far:

\ Main Postulate‘ = Isolated systems tend to equilibrium
for which state variables exist

Irreversibility =- State variables do not exist during irreversible processes
Oth Law = Temperature defines Thermal Equilibrium;

TEquiIibrium = TIdealGas = 7—Carnot

= Energy is conserved; AU = AQ + AW

2nd Law = Entropy of System + Surroundings cannot decrease;

Third Law = (not covered yet) Absolute zero T and S exist
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Important corrolaries so far:

= Nonequilibrium systems exist.
= Integrals are Path Dependent
’State Function ‘ = Can get by integrating along any path; § dX =0
= Heat can't flow from cold to hot
Kelvin-Planck = Cannot convert all heat energy to work
= Most efficient possible engine has =1 — %
‘Clausius Inequality‘ = Heat flow into a system: § ﬁ <0

’ Clausius Equality‘ = State variable Entropy exists for system AS = [ $

= Defined by direction of increase in Entropy
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