

.. Thermodynamics

Heat *can* be converted to work

Reversible Carnot Engines

Carnot Heat Flows proportional to Temperatures

Second Law stated in terms of efficiency

Real Engine cycles: Otto, Sterling, Brayton

Graeme Ackland

Lecture 6: Increasing Entropy

Three body heat exchange

Clausius: "What about heat transfers in an arbitrary cyclic process?"

Carnot refrigerators A and B and Engine E. Heat reservoirs T_0 , T_1 , T_2

Adjust Heat flow to hot reservoirs

 $(Q_1 = Q_{1A}; Q_2 = Q_{2A})$

Heat flow to cold reservoir $Q_{0A} + Q_{0B} - Q_0$. (expect to be -ve)

Clausius Inequality

- System: both fridges and the engine
- Total work done: $W (W_A + W_B)$.
- No net heat flows to HOT reservoirs.
- $(Q_{0A} + Q_{0B}) Q_0 = W (W_A + W_B)$ (1st Law).
- Kelvin-Planck violated unless...

$$W \leq W_A + W_B$$
 and so $Q_{0A} + Q_{0B} - Q_0 \leq 0$

- From the Carnot refrigerator efficiencies we have... $\frac{Q_{1A}}{Q_{0A}} = \frac{T_1}{T_0} \implies Q_{0A} = Q_1 \times \frac{T_0}{T_1};$ similarly $Q_{0B} = Q_2 \times \frac{T_0}{T_2}.$
- Thus in terms of the heat entering the cold reservoir,

$$Q_{0A} + Q_{0B} - Q_0 = \left(\frac{Q_1}{T_1} + \frac{Q_2}{T_2}\right) T_0 - Q_0 \le 0 \to \frac{Q_1}{T_1} + \frac{Q_2}{T_2} - \frac{Q_0}{T_0} \le 0$$

Again...

$$\frac{\underline{Q}_1}{\underline{T}_1} + \frac{\underline{Q}_2}{\underline{T}_2} - \frac{\underline{Q}_0}{\underline{T}_0} \le 0$$

So far we considered heat flows Q_i for the engines and refrigerators.

Now consider heat inputs q_i to **the working substance of the engine**. The engine absorbs heat $q_1 = Q_1$ from the hot reservoirs, and *returns* heat to the cold reservoir, so there is a change of sign: $q_0 = -Q_0$.

$$\frac{q_0}{T_0} + \frac{q_1}{T_1} + \frac{q_2}{T_2} \le 0$$

In general

• If the number of engines and refrigerators is arbitrary,

$$\sum_{i} \frac{q_i}{T_i} \le 0$$

Where T_i are from the reservoirs, not the temperature of the system.

• In the limit of $q \rightarrow 0$, the summation may be replaced by an integral:

$$\int rac{d^{-}q}{T} \leq$$
 0, Clausius inequality

T is temperature of **surroundings**, not the **system**.

Reversible: system in equilibrium with surroundings

 $T_{\text{system}} = T_{\text{reservoirs}}$ Clausius inequality: $\int \frac{d \cdot q}{T} \leq 0$ but since all processes can also be reversed... $\int \frac{d \cdot q}{T} \geq 0$

So for reversible cycles,

$$\int rac{d^{*}q_{R}}{T}=0,$$
 reversible cycle only

Note that now T is the same for both the **surroundings** and the **system**.

Entropy - an existence proof from a contour integral

Consider a reversible cycle i to f then back to i,

Reversibility means the equality sign in the Clausius inequality applies:

$$\int \frac{d^{T}q_{R}}{T} = \int_{i}^{f} \frac{d^{T}q_{R}}{T} + \int_{f}^{i} \frac{d^{T}q_{R}}{T} = 0$$

from which

$$\int_{i|\text{path 1}}^{f} \frac{d \bar{q}_R}{T} = \int_{i|\text{path 2}}^{f} \frac{d \bar{q}_R}{T}.$$

Because the value of the integral is path-independent, $\frac{d q_R}{T}$ is an exact differential of some state function, we call it **entropy** *S*:

- The integral is path-independent.
- $\frac{dq_R}{T}$ is an exact differential of some state function,
- We call it entropy S:

$$\int_{i}^{f} \frac{d^{2}q_{R}}{T} = \int_{i}^{f} dS = S_{f} - S_{i} = \Delta S$$

- This equation defines changes in entropy.
- It doesn't give a physical clue to what entropy means microscopically.
- It doesn't hint at what S = 0 means.

The Principle of Increasing Entropy

Reconsider the existence proof for entropy if one process (i to f) is irreversible.

The Clausius inequality leads to

$$\int_{i}^{f} \frac{d^{2}q}{T} + \int_{f}^{i} \frac{d^{2}q_{R}}{T} \leq 0$$

from which

$$\int_{i}^{f} \frac{d q}{T} \leq \int_{i}^{f} \frac{d q_{R}}{T} = S_{f} - S_{i}$$

For an irreversible process, $S_f - S_i$, is greater than the integration of infinitesimal contributions:

$$\int \frac{\text{heat supplied from the surroundings}}{\text{temperature of the surroundings}} = \int_{i}^{f} \frac{d^{2}q}{T} \leq \int dS_{\text{system}}$$

Example calculation of an entropy change

Water at 20° C is placed in thermal contact with a heat reservoir at 100° C; heated **irreversibly** at constant pressure to an equilibrium state at 100° C.

- To calculate the entropy change of the water (the "system") consider an **alternative reversible** process.
- Use as the "surroundings" a series of heat reservoirs each at slightly higher temperature from T_i to T_f .
- Each intermediate stage in the **alternative** process is the reversible transfer of heat $dQ = C_P dT$ from a reservoir at the temperature of the water.
- The change in entropy of the water is $dS = C_P dT/T$.
- For the complete process, the change in entropy of the water is $\Delta S^{SYS} = C_P \ln \frac{373}{293} = C_P \times 0.24141.$
- The change in entropy for the **system** in an irreversible process between equilibrium states can be calculated using an equivalent reversible process.

... entropy change in system

$$\Delta S^{SYS} = C_P \ln \frac{373}{293} = C_P \times 0.24141$$

Calculate change in entropy ΔS^{SURR} of the **surroundings** Actual surroundings: a reservoir at 100°C, delivers heat

$$C_P(T_f - T_i) = C_P(373 - 293) = C_P \times 80$$

Again, consider an alternative reversible process, delivering heat via a series of reservoirs each slightly cooler than the previous. The change in entropy of the surroundings is thus $-C_P(373 - 293)/373 = -C_P \times 0.21448$.

note that entropy increases

$$\Delta S^{TOT} = \Delta S^{SYS} + \Delta S^{SURR} = 0.02693C_P > 0$$

Changes of entropy of thermally isolated systems in adiabatic processes

A thermally isolated system exchanges no heat with the surroundings. So, for an irreversible process inside a thermally isolated system

$$dS > 0$$
 ($ightarrow S_f - S_i = \Delta S > 0$ for a process)

It also follows that for a finite **reversible** adiabatic process $\Delta S = 0$. Conclusion:

The entropy of a thermally isolated system increases in any irreversible process and is unaltered in a reversible process.

This is the principle of increasing entropy.

- I Heat cannot flow from a cooler to a hotter reservoir.
- eat cannot be 100% converted to Work
- Seversible cycles are the most efficient engines possible
- Intropy cannot decrease

"Heat is the lowest form of energy"

Main Postulate	⇒	Isolated systems tend to equilibrium for which state variables exist
Irreversibility	\Rightarrow	State variables do not exist during irreversible processes
Oth Law	⇒	Temperature defines Thermal Equilibrium; $T_{Equilibrium} = T_{IdealGas} = T_{Carnot}$
1st Law	\Rightarrow	Energy is conserved; $\Delta U = \Delta Q + \Delta W$
2nd Law	\Rightarrow	Entropy of System + Surroundings cannot decrease;
Third Law	\Rightarrow	(not covered yet) Absolute zero T and S exist

・ロト ・ 日 ト ・ 田 ト ・

2

Important corrolaries so far:

Equilibrium	\Rightarrow	Nonequilibriun	n systems exist.	
Work, Heat	\Rightarrow	Integrals are P	Path Dependent	
State Function	\Rightarrow Can get by integrating along <i>any</i> path; $\oint dX = 0$			
Clausius	\Rightarrow Heat can't flow from cold to hot			
Kelvin-Planck	$\Rightarrow \qquad {\sf Cannot \ convert \ all \ heat \ energy \ to \ work}$			
Carnot	\Rightarrow Most efficient possible engine has $\eta = 1 - rac{T_{cold}}{T_{hot}}$			
Clausius Inequality	\Rightarrow	Heat flow into a	system: $\oint \frac{dQ}{T} < 0$	
Clausius Equality	\Rightarrow State variable Entropy exists for system $\Delta S = \int rac{dQ}{T}$			
Time	\Rightarrow	Defined by direction	of increase in Entropy	
Graeme Ackland	Le	cture 6: Increasing Entropy	October 3, 2019 15 / 15	

.