
...Thermodynamics

Heat can be converted to work

Reversible Carnot Engines

Carnot Heat Flows proportional to Temperatures

Second Law stated in terms of efficiency

Real Engine cycles: Otto, Sterling, Brayton
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Three body heat exchange

Clausius: “What about heat transfers in an arbitrary cyclic process?”

Carnot refrigerators A and B
and Engine E.
Heat reservoirs T0, T1 , T2

Adjust Heat flow to hot
reservoirs
(Q1 = Q1A; Q2 = Q2A)

Heat flow to cold reservoir
Q0A + Q0B − Q0.
(expect to be -ve)
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Clausius Inequality

System: both fridges and the engine

Total work done: W − (WA + WB).

No net heat flows to HOT reservoirs.

(Q0A + Q0B)− Q0 = W − (WA + WB) (1st Law).

Kelvin-Planck violated unless...

W ≤WA + WB and so Q0A + Q0B − Q0 ≤ 0

From the Carnot refrigerator efficiencies we have...
Q1A
Q0A

= T1
T0

=⇒ Q0A = Q1 × T0
T1

; similarly Q0B = Q2 × T0
T2

.

Thus in terms of the heat entering the cold reservoir,

Q0A + Q0B −Q0 =

(
Q1

T1
+

Q2

T2

)
T0 −Q0 ≤ 0→ Q1

T1
+

Q2

T2
− Q0

T0
≤ 0
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Heat flows to working substance

Again...

Q1

T1
+ Q2

T2
− Q0

T0
≤ 0

So far we considered heat flows Qi for the engines and refrigerators.

Now consider heat inputs qi to the working substance of the engine.
The engine absorbs heat q1 = Q1 from the hot reservoirs, and returns heat
to the cold reservoir, so there is a change of sign: q0 = −Q0.

q0

T0
+

q1

T1
+

q2

T2
≤ 0
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Generalised Clausius Inequality

In general

If the number of engines and refrigerators is arbitrary,∑
i

qi
Ti
≤ 0

Where Ti are from the reservoirs, not the temperature of the system.

In the limit of q → 0, the summation may be replaced by an integral:∫
d̄ q

T
≤ 0, Clausius inequality

T is temperature of surroundings, not the system.

Graeme Ackland Lecture 6: Increasing Entropy October 3, 2019 5 / 15



Clausius for Reversible cycles.

Reversible: system in equilibrium with surroundings

Tsystem = Treservoirs

Clausius inequality:
∫ d̄ q

T ≤ 0

but since all processes can also be reversed...
∫ d̄ q

T ≥ 0

So for reversible cycles,∫
d̄ qR
T

= 0, reversible cycle only

Note that now T is the same for both the surroundings and the system.
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Entropy - an existence proof from a contour integral

Consider a reversible cycle i to f
then back to i ,

Reversibility means the equality sign
in the Clausius inequality applies:∫

d̄ qR
T

=

∫ f

i

d̄ qR
T

+

∫ i

f

d̄ qR
T

= 0

from which∫ f

i |path 1

d̄ qR
T

=

∫ f

i |path 2

d̄ qR
T

.

Because the value of the integral is path-independent, d̄ qR
T is an exact

differential of some state function, we call it entropy S :

Graeme Ackland Lecture 6: Increasing Entropy October 3, 2019 7 / 15



Entropy - a new state variable

The integral is path-independent.
d̄ qR
T is an exact differential of some state function,

We call it entropy S :

∫ f

i

d̄ qR
T

=

∫ f

i
dS = Sf − Si = ∆S

This equation defines changes in entropy.

It doesn’t give a physical clue to what entropy means microscopically.

It doesn’t hint at what S = 0 means.
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The Principle of Increasing Entropy

Reconsider the existence proof for entropy if one process (i to f ) is irreversible.

The Clausius inequality leads to∫ f

i

d̄ q

T
+

∫ i

f

d̄ qR
T
≤ 0

from which∫ f

i

d̄ q

T
≤
∫ f

i

d̄ qR
T

= Sf − Si

For an irreversible process, Sf − Si , is greater than the integration of
infinitesimal contributions:∫

heat supplied from the surroundings

temperature of the surroundings
=

∫ f

i

d̄ q

T
≤
∫

dSsystem
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Example calculation of an entropy change

Water at 20◦C is placed in thermal contact with a heat reservoir at 100◦C;
heated irreversibly at constant pressure to an equilibrium state at 100◦C.

To calculate the entropy change of the water (the “system”)
consider an alternative reversible process.

Use as the “surroundings” a series of heat reservoirs each at
slightly higher temperature from Ti to Tf .

Each intermediate stage in the alternative process is the
reversible transfer of heat dQ = CPdT from a reservoir at the
temperature of the water.

The change in entropy of the water is dS = CPdT/T .

For the complete process, the change in entropy of the water is
∆SSYS = CP ln 373

293
= CP × 0.24141.

The change in entropy for the system in an irreversible process
between equilibrium states can be calculated using an equivalent
reversible process.
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... entropy change in system

∆SSYS = CP ln
373

293
= CP × 0.24141

Calculate change in entropy ∆SSURR of the surroundings
Actual surroundings: a reservoir at 100◦C, delivers heat

CP(Tf − Ti ) = CP(373− 293) = CP × 80

.
Again, consider an alternative reversible process, delivering
heat via a series of reservoirs each slightly cooler than the
previous. The change in entropy of the surroundings is thus
−CP(373− 293)/373 = −CP × 0.21448.

note that entropy increases

∆STOT = ∆SSYS + ∆SSURR = 0.02693CP > 0
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Changes of entropy of thermally isolated systems in
adiabatic processes

A thermally isolated system exchanges no heat with the surroundings.
So, for an irreversible process inside a thermally isolated system

dS > 0 (→ Sf − Si = ∆S > 0 for a process)

It also follows that for a finite reversible adiabatic process ∆S = 0.
Conclusion:

The entropy of a thermally isolated system increases in any irre-
versible process and is unaltered in a reversible process.

This is the principle of increasing entropy.
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Equivalent statements of Second Law

1 Heat cannot flow from a cooler to a hotter reservoir.

2 Heat cannot be 100% converted to Work

3 Reversible cycles are the most efficient engines possible

4 Entropy cannot decrease

“Heat is the lowest form of energy”
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Summary so far:

Main Postulate ⇒ Isolated systems tend to equilibrium
for which state variables exist

Irreversibility ⇒ State variables do not exist during irreversible processes

0th Law ⇒ Temperature defines Thermal Equilibrium;
TEquilibrium = TIdealGas = TCarnot

1st Law ⇒ Energy is conserved; ∆U = ∆Q + ∆W

2nd Law ⇒ Entropy of System + Surroundings cannot decrease;

Third Law ⇒ (not covered yet) Absolute zero T and S exist
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Important corrolaries so far:

Equilibrium ⇒ Nonequilibrium systems exist. .

Work, Heat ⇒ Integrals are Path Dependent

State Function ⇒ Can get by integrating along any path;
∮
dX = 0

Clausius ⇒ Heat can’t flow from cold to hot

Kelvin-Planck ⇒ Cannot convert all heat energy to work

Carnot ⇒ Most efficient possible engine has η = 1− Tcold

Thot

Clausius Inequality ⇒ Heat flow into a system:
∮

dQ
T < 0

Clausius Equality ⇒State variable Entropy exists for system ∆S =
∫

dQ
T

Time ⇒ Defined by direction of increase in Entropy
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