

Entropy: The state function for the Second Law
Entropy $\int d S=\int \frac{d Q}{T}$
Central Equation $d U=T d S-P d V$

Ideal gas entropy $\Delta s=c_{v} \ln T / T_{0}+R \ln v / v_{0}$

Boltzmann entropy $S=k \log W$

Statistical Entropy $S=-k_{B} \sum_{i} p_{i} \ln \left(p_{i}\right)$

Fewer entropy with chickens

Counting Things You can't count a continuum.

This includes states which may never be actually realised.
This is where the ideal gas entropy breaks down
Boltzmann's entropy requires Quantum Mechanics.

Equilibrium and the thermodynamic potentials

- Second Law : entropy increases in any isolated system.
- Entropy of system+surroundings must increase.
- A system can reduce its entropy, provided the entropy of the surroundings increases by more.

Equilibrium and boundary conditions

- Main postulate of thermodynamics: systems tend to "equilibrium".
- Equilibrium depends on boundary conditions.

A function for every boundary condition

Another statement of 2nd Law...

System+surroundings maximise S

Compare with mechanical equilibrium

System minimises energy

In thermodynamic equilibrium
System minimises ...

Free energy

Free energy

Willard Gibbs 1839-1903:
A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces, 1873

Equation of state plotted as a surface of energy vs T and P.

Volume, entropy are slopes of this surface Heat capacity, compressibility are curvatures.

Surface and Slopes: Not like this

Surfaces and slope: More like something from Lovecraft

H.P.Lovecraft 1928 "The Call of Cthulhu"

PV or TS "space" is completely non-euclidean.
Einstein 1928: [on general relativity] "The fact that the metric tensor is denoted as geometrical is simply connected to the fact that this formal structure first appeared in the area of study denoted as geometry. However, this is by no means a justification for denoting as geometry every area of study in which this formal structure plays a role,"

Why Free energy

Different axes: different function

Unmeasurable "entropy" axis is awkward

Equilibrium depends on boundary conditions.
Different Definition of Free energy for every boundary condition.
Depends on the dependent variables.
Maximum work available from a system.
Free energies are all state variables.
Also referred to as thermodynamic potentials.

The thermodynamic potentials

potential
entropy S

$$
T d S=d U+P d V
$$

$$
U, V
$$

internal energy U
enthalpy H

$$
H=U+P V
$$

$$
d H=T d S+V d P
$$

$$
S, P
$$

Helmholtz free energy F

$$
F=U-T S
$$

$$
d F=-P d V-S d T
$$

$$
T, V
$$

the Gibbs free energy G

$$
G=H-T S \quad d G=V d P-S d T \quad T, P
$$

Hamiltonians, Lagrangians and all that

- Physicists often lazily think we can start with the Hamiltonian ("energy").
- This makes a hidden assumption about boundary conditions
- In reality, careful thought is needed about what "energy" to use.
- e.g. Particle moving in a potential: S, V boundary, use $\mathrm{U}=\mathrm{PE}+\mathrm{KE}$
- e.g. Air as sound wave passes: S,P boundary, use H
- e.g. Reagents dissolved in water: T, V boundary, use F
- e.g. Water exposed to atmosphere : T, P boundary, use G

Maxwell Relations

- State functions have TWO independent variables.
- Must be relationships between P, V, T and S.
- Equation of state is one - material specific.
- Also general mathematical relationships: Maxwell

Derivation of Maxwell's relations

- The four Maxwell's relations are identities involving P, V, T and S.
- They are most conveniently derived from U,H,F,G
- State functions: second derivatives do not depend on the order of differentiation.
e.g. $d U=T d S-P d V$

$$
\frac{\partial^{2} U}{\partial V_{S} \partial S_{V}}=\frac{\partial^{2} U}{\partial S_{V} \partial V_{S}} \Longrightarrow \frac{\partial T}{\partial V_{s}}=-\frac{\partial P}{\partial S_{v}}
$$

etc.

Derivation of Maxwell's relations

To recall the Maxwell relations from their derivation it can be seen that:
(1) The independent (natural) variables of the potential from which each Maxwell relation is derived appear in the denominators of the relation.
(2) Cross multiplication of numerators and denominators yields products of pairs of conjugate variables, $\partial S \partial T$ and $\partial P \partial V$.
(3) The sign can be deduced by recourse to the appropriate potential function.

Potentials etc

potential

differential

$$
d U=T d S-P d V \quad\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}
$$

enthalpy H

$$
H=U+P V
$$

$$
d H=T d S+V d P
$$

$$
\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}
$$

Helmholtz free energy F

$$
F=U-T S
$$

$$
d F=-P d V-S d T
$$

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}
$$

the Gibbs free energy G

$$
G=H-T S
$$

$$
d G=V d P-S d T
$$

$$
\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T}
$$

Worth remembering!

TdS equations

To relate entropy changes to measurable quantities.

$$
\begin{gathered}
T d s=c_{V} d T+T\left(\frac{\partial P}{\partial T}\right)_{V} d v \\
T d s=c_{P} d T-T\left(\frac{\partial V}{\partial T}\right)_{P} d P \\
T d s=c_{P}\left(\frac{\partial T}{\partial V}\right)_{P} d V+c_{V}\left(\frac{\partial T}{\partial P}\right)_{V} d P
\end{gathered}
$$

such as Heat capacities, thermal expansion, compressibility and Gay-Lussac coefficient

Gay Lussac Coefficient

Gay-Lussac, or Amonton's "Law" "greater pressure causes more hot air"

$$
\begin{gathered}
k_{G L}=\frac{P}{T} \\
k_{G L}=\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}=
\end{gathered}
$$

"or maybe not" - unspoken isothermal assumption.

$$
\begin{gathered}
k_{G L}=\frac{P}{T} \\
k_{G L}=\left(\frac{\partial P}{\partial T}\right)_{S}=\left(\frac{\partial S}{\partial V}\right)_{P}
\end{gathered}
$$

These $k_{G L}$ are properties of the material.
Louis Joseph Gay-Lussac; 17781850
iso- is a prefix from the Greek isos, meaning "equal."

- Equal in all parts/directions isotropic
- Equal element isotopic
- Equal Temperature: isothermal
- Equal Pressure: isobaric
- Equal Volume: isochoric = isovolumetric
- Equal Enthalpic: isenthalpic
- Equal Energy: isoenergetic
- Equal Entropy: isentropic
- Equal Heat: adiabatic

Internal Energy for processes involving entropy and volume

If no work is done (V constant)

$$
\begin{aligned}
d U & =T d S-P d V \\
& =\left(\frac{\partial U}{\partial S}\right)_{V} d S+\left(\frac{\partial U}{\partial V}\right)_{S} d V
\end{aligned}
$$

$$
\Delta U=Q \quad \text { (isochoric, no work) }
$$

note: $d q_{R}=T d S$ for any
REVERSIBLE change with no restriction on $d V$
Heat capacity
For reversible, isochoric heat flows:
$C_{V}=\frac{d Q_{V}}{d T}=\frac{d U_{V}}{d T}=\left(\frac{\partial U}{\partial T}\right)_{V}$
and $C_{V}=T \frac{d S}{d T} V=T\left(\frac{\partial S}{\partial T}\right)_{V}$

$$
T d s=c_{V} d T+T\left(\frac{\partial P}{\partial T}\right)_{v} d v
$$

From partial derivatives
$\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$,
a Maxwell's relation.

Enthalpy for processes involving entropy and pressure $\mathrm{H}=\mathrm{U}+\mathrm{PV}$

$d H=d U+P d V+V d P$

$$
=T d S+V d P
$$

$d H=\left(\frac{\partial H}{\partial S}\right)_{P} d S+\left(\frac{\partial H}{\partial P}\right)_{S} d P$
Equate coefficients to get:
(1) $T=\left(\frac{\partial H}{\partial S}\right)_{P}$
(2) $V=\left(\frac{\partial H}{\partial P}\right)_{S}$

TdS equation

$$
T d s=c_{P} d T-T\left(\frac{\partial V}{\partial T}\right)_{P} d P
$$

Constant P_{0}, only $P_{0} V$ work:

$$
\Delta H=Q\left(P_{f}=P_{i}=P_{0}\right)
$$

$\therefore \mathrm{dH}=\mathrm{TdS}$ for isobaric process.
note $d q_{R}=T d S$ for any
REVERSIBLE changes with no restriction on $d P$.
Heat capacity
$C_{P}=\frac{d Q_{P}}{d T}=\frac{d H_{P}}{d T}=\left(\frac{\partial H}{\partial T}\right)_{P}$
and $C_{P}=T \frac{d S_{P}}{d T}=T\left(\frac{\partial S}{\partial T}\right)_{P}$
From partial derivatives
$\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}$,
another Maxwell's relation.

Helmholtz for processes involving volume and temperature $\mathrm{F}=\mathrm{U}$-TS

e.g. Chemicals in a closed container, reactants dispersed in water.

$$
\begin{aligned}
d F & =d U-T d S-S d T \\
& =-P d V-S d T \\
& =\left(\frac{\partial F}{\partial V}\right)_{T} d V+\left(\frac{\partial F}{\partial T}\right)_{V} d T
\end{aligned}
$$

Equate coefficients to get:
(1) $-P=\left(\frac{\partial F}{\partial V}\right)_{T}$
(2) $-S=\left(\frac{\partial F}{\partial T}\right)_{V}$

Finally, second derivatives of F.
$\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}$,
another Maxwell's relation.

Gibbs for processes involving temperature and pressure.

For systems open to pressure transmitting medium, no exchanging material.

$$
\begin{aligned}
d G & =d H-T d S-S d T \\
& =V d P-S d T \\
& =\left(\frac{\partial G}{\partial P}\right)_{T} d P+\left(\frac{\partial G}{\partial T}\right)_{P} d T
\end{aligned}
$$

Equate coefficients to get:
(1) $V=\left(\frac{\partial G}{\partial P}\right)_{T}$
(2) $-S=\left(\frac{\partial G}{\partial T}\right)_{P}$
from partial derivatives
$\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T}$, another Maxwell's relation.

