... Thermodynamics

Entropy: The state function for the Second Law
Entropy [dS = [ <2

Central Equation dU = TdS — PdV

Ideal gas entropy As =c¢,InT/To+ RInv/vy
Boltzmann entropy S = klogW

Statistical Entropy S = —kg >, pi In(p;)
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Fewer entropy with chickens

Counting Things You can't count a continuum.

This includes states which may never be actually realised.
This is where the ideal gas entropy breaks down

Boltzmann's entropy requires Quantum Mechanics.
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Equilibrium and the thermodynamic potentials

@ Second Law : entropy increases in any isolated system.

@ Entropy of system+surroundings must increase.

@ A system can reduce its entropy, provided the entropy of the
surroundings increases by more.
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Equilibrium and boundary conditions

@ Main postulate of thermodynamics: systems tend to “equilibrium

@ Equilibrium depends on boundary conditions.
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A function for every boundary condition

Another statement of 2nd Law...

’ System+surroundings maximise S ‘

Compare with mechanical equilibrium

’ System minimises energy‘

In thermodynamic equilibrium

‘ System minimises ‘

Free energy

October 14, 2019 5/25



Willard Gibbs 1839-1903:

A Method of Geometrical Representation of
the Thermodynamic Properties of
Substances by Means of Surfaces, 1873

Equation of state plotted as a surface of
energy vs T and P.

Volume, entropy are slopes of this surface

Heat capacity, compressibility are curvatures.
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Surface and Slopes: Not like this
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Surfaces and slope: More like something from Lovecraft

H.P.Lovecraft 1928 “The Call of Cthulhu”

PV or TS “space” is completely non-euclidean.

Einstein 1928: [on general relativity] “The fact that the metric tensor is
denoted as geometrical is simply connected to the fact that this formal
structure first appeared in the area of study denoted as geometry.
However, this is by no means a justification for denoting as geometry every
area of study in which this formal structure plays a role,”
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Why Free energy

‘ Different axes: different function‘

‘ Unmeasurable “entropy” axis is awkward ‘

Equilibrium depends on boundary conditions.

Different Definition of Free energy for every boundary condition.
Depends on the dependent variables.

Maximum work available from a system.

Free energies are all state variables.

Also referred to as thermodynamic potentials.
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The thermodynamic potentials

potential differential natural variables
entropy S TdS = dU + PdV u,v
internal energy U dU = TdS — PdV S, v
enthalpy H
H=U+ PV dH = TdS + VdP S P

Helmholtz free energy F
F=U-TS dF = —PdV — SdT T.v

the Gibbs free energy G
G=H-TS dG = VdP — 5dT T,P
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Hamiltonians, Lagrangians and all that

@ Physicists often lazily think we can start with the Hamiltonian
(“energy”).

This makes a hidden assumption about boundary conditions

In reality, careful thought is needed about what “energy” to use.
e.g. Particle moving in a potential: S,V boundary, use U= PE + KE
e.g. Air as sound wave passes: S,P boundary, use H

e.g. Reagents dissolved in water: T, V boundary, use F

e.g. Water exposed to atmosphere : T, P boundary, use G
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Maxwell Relations

State functions have TWO independent variables.
Must be relationships between P, V, T and S.

Equation of state is one - material specific.

Also general mathematical relationships: Maxwell
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Derivation of Maxwell's relations

@ The four Maxwell’s relations are identities involving P, V, T and S.

@ They are most conveniently derived from U,H,F,G

@ State functions: second derivatives do not depend on the order of
differentiation.

e.g. dU = TdS -PdV

0?U 0*U oT oP

aVsdSy, _ 0SyoVe ~ ov.  _ds,

etc.
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Derivation of Maxwell's relations

To recall the Maxwell relations from their derivation it can be seen that:
@ The independent (natural) variables of the potential from which each
Maxwell relation is derived appear in the denominators of the relation.

@ Cross multiplication of numerators and denominators yields products
of pairs of conjugate variables, 9S 0T and 0P OV.

© The sign can be deduced by recourse to the appropriate potential
function.
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Potentials etc

potential differential Maxwell relation
internal energy U dU = TdS — PdV (37;’/’)5 = — (%)V
enthalpy H
H=U+PV dH = TdS + VdP (5F)s = (58)p
Helmholtz free energy F
F=U-TS dF = —PdV — SdT (92), = (&%),

the Gibbs free energy G
G=H TS 46 = vip—SaT  (3), =~ (%),

Worth remembering!
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TdS equations

To relate entropy changes to measurable quantities.

oP
Tds = cydT + T (8T> dv

oV
Tds = cpdT — T dp
ST <8T>

Tds = cp (g;) dV + cy <g;) dP

such as Heat capacities, thermal expansion, compressibility and
Gay-Lussac coefficient
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Gay Lussac Coefficient

Gay-Lussac, or Amonton's “Law”
“greater pressure causes more hot air”

k~ = B
GL— T
ke = (57)y = (§0) 7 =

“or maybe not” - unspoken isothermal

assumption.

ko =

56570 &5 o= (57)s = (vl

These kg, are properties of the material.
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1ISO

iso- is a prefix from the Greek isos, meaning "equal.”
Equal in all parts/directions isotropic

Equal element isotopic

Equal Temperature: isothermal

Equal Pressure: isobaric

Equal Volume: isochoric = isovolumetric
Equal Enthalpic: isenthalpic

Equal Energy: isoenergetic

Equal Entropy: isentropic

Equal Heat: adiabatic
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Internal Energy for processes involving entropy and

volume

If no work is done (V constant)

dU = TdS— PdV AU =Q (isochoric, no work)
ou ou
- (35) ds + <av>5dv note: dqg = TdS for any
REVERSIBLE change with no
Equate coefficients to get: restriction on dV
Q7= (fLU)V Heat capacity
_p— For reversible, isochoric heat flows:
® —P=libs oy =28 = M~ (30,
TdS equation
q and CV—T(‘ﬁV—T( )v
opP From partial derivatives
Tds = cydT + T dv (iﬂ) __(ZLP)
aT av)s — as)v

a Maxwell's relation.
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Enthalpy for processes involving entropy and

pressure H=U+PV

Constant Py, only PyV work:
dH dU + PdV + VdP
TdS + VdP

dH = <8H> ds + (8H> dp . dH = TdS for isobaric process.
95 ) p P ) s note dgr = T dS for any

REVERSIBLE changes with no
restriction on dP.

AH=Q (Pr=P;=Py),

Equate coefficients to get:

_ (0H
07= (%)P Heat capacity
d _ dQp _ dHp _ (OH
o V= (a%)s Cp= g7 _dS‘TTP = (57)p
TdS equation and Cp=TF =T (%)P
From partial derivatives

74 T\ _ (dV
Tds = cpdT — T <a> ap (55)s = (35)p
oT ) p another Maxwell's relation.
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Helmholtz for processes involving volume and

temperature F=U-TS
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e.g. Chemlcals in a cIosed container,

reactants dispersed in water.

dF =

dU — TdS — S5dT
= —PdV —5dT

OF oF
- <av> dv + <8T) o7
Equate coefficients to get:
@ —P=(5v)r
0 -5= (W)v

Finally, second derivatives of F.

(g#)v = (%)T'
another Maxwell's relation.
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Gibbs for processes involving temperature and

pressure.

dG = dH— TdS — 5dT
= VdP — 5dT

oG oG
- (aP)TdP* <8T>PdT

Equate coefficients to get:

oV= (%)T
For systems open to pressure Q@ -S= (%)P
transmitting medium, no
exchanging material.

from partial derivatives
(57)p =~ (53)

or)p= —\oP)7T
another Maxwell's relation.
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