
...Thermodynamics

Entropy: The state function for the Second Law

Entropy
∫

dS =
∫

d̄ Q
T

Central Equation dU = TdS − PdV

Ideal gas entropy ∆s = cv ln T/T0 + R ln v/v0

Boltzmann entropy S = klogW

Statistical Entropy S = −kB
∑

i pi ln(pi )
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Fewer entropy with chickens

Counting Things You can’t count a continuum.

This includes states which may never be actually realised.
This is where the ideal gas entropy breaks down

Boltzmann’s entropy requires Quantum Mechanics.
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Equilibrium and the thermodynamic potentials

Second Law : entropy increases in any isolated system.
Entropy of system+surroundings must increase.
A system can reduce its entropy, provided the entropy of the
surroundings increases by more.
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Equilibrium and boundary conditions

Main postulate of thermodynamics: systems tend to “equilibrium”.

Equilibrium depends on boundary conditions.
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A function for every boundary condition

Another statement of 2nd Law...

System+surroundings maximise S

Compare with mechanical equilibrium

System minimises energy

In thermodynamic equilibrium

System minimises ...

Free energy
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Free energy

Willard Gibbs 1839-1903:
A Method of Geometrical Representation of
the Thermodynamic Properties of
Substances by Means of Surfaces, 1873

Equation of state plotted as a surface of
energy vs T and P.

Volume, entropy are slopes of this surface

Heat capacity, compressibility are curvatures.
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Surface and Slopes: Not like this
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Surfaces and slope: More like something from Lovecraft

H.P.Lovecraft 1928 “The Call of Cthulhu”

PV or TS “space” is completely non-euclidean.

Einstein 1928: [on general relativity] “The fact that the metric tensor is
denoted as geometrical is simply connected to the fact that this formal
structure first appeared in the area of study denoted as geometry.
However, this is by no means a justification for denoting as geometry every
area of study in which this formal structure plays a role,”
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Why Free energy

Different axes: different function

Unmeasurable “entropy” axis is awkward

Equilibrium depends on boundary conditions.
Different Definition of Free energy for every boundary condition.
Depends on the dependent variables.
Maximum work available from a system.
Free energies are all state variables.
Also referred to as thermodynamic potentials.
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The thermodynamic potentials

potential differential natural variables

entropy S TdS = dU + PdV U,V

internal energy U dU = TdS − PdV S ,V

enthalpy H
H = U + PV dH = TdS + VdP S ,P

Helmholtz free energy F
F = U − TS dF = −PdV − SdT T ,V

the Gibbs free energy G
G = H − TS dG = VdP − SdT T ,P

The “Natural Variables” define the boundary conditions for which the
potential is most useful. e.g. F is useful for fixed volume system in
contact with a reservoir at fixed T.
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Hamiltonians, Lagrangians and all that

Physicists often lazily think we can start with the Hamiltonian
(“energy”).

This makes a hidden assumption about boundary conditions

In reality, careful thought is needed about what “energy” to use.

e.g. Particle moving in a potential: S,V boundary, use U= PE + KE

e.g. Air as sound wave passes: S,P boundary, use H

e.g. Reagents dissolved in water: T, V boundary, use F

e.g. Water exposed to atmosphere : T, P boundary, use G
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Maxwell Relations

State functions have TWO independent variables.

Must be relationships between P, V , T and S .

Equation of state is one - material specific.

Also general mathematical relationships: Maxwell
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Derivation of Maxwell’s relations

The four Maxwell’s relations are identities involving P, V , T and S .

They are most conveniently derived from U,H,F,G

State functions: second derivatives do not depend on the order of
differentiation.

e.g. dU = TdS -PdV

∂2U

∂VS∂SV
=

∂2U

∂SV ∂VS
=⇒ ∂T

∂Vs
= − ∂P

∂Sv

etc.
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Derivation of Maxwell’s relations

To recall the Maxwell relations from their derivation it can be seen that:

1 The independent (natural) variables of the potential from which each
Maxwell relation is derived appear in the denominators of the relation.

2 Cross multiplication of numerators and denominators yields products
of pairs of conjugate variables, ∂S ∂T and ∂P ∂V .

3 The sign can be deduced by recourse to the appropriate potential
function.
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Potentials etc

potential differential Maxwell relation natural variables

internal energy U dU = TdS − PdV
(
∂T
∂V

)
S

= −
(
∂P
∂S

)
V

S ,V

enthalpy H

H = U + PV dH = TdS + VdP
(
∂T
∂P

)
S

=
(
∂V
∂S

)
P

S ,P

Helmholtz free energy F

F = U − TS dF = −PdV − SdT
(
∂P
∂T

)
V

=
(
∂S
∂V

)
T

T ,V

the Gibbs free energy G

G = H − TS dG = VdP − SdT
(
∂V
∂T

)
P

= −
(
∂S
∂P

)
T

T ,P

Worth remembering!
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TdS equations

To relate entropy changes to measurable quantities.

Tds = cV dT + T

(
∂P

∂T

)
v

dv

Tds = cPdT − T

(
∂V

∂T

)
P

dP

Tds = cP

(
∂T

∂V

)
P

dV + cV

(
∂T

∂P

)
V

dP

such as Heat capacities, thermal expansion, compressibility and
Gay-Lussac coefficient
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Gay Lussac Coefficient

Louis Joseph Gay-Lussac;
1778 1850

Gay-Lussac, or Amonton’s “Law”
“greater pressure causes more hot air”

kGL = P
T

kGL =
(
∂P
∂T

)
V

=
(
∂S
∂V

)
T

=

“or maybe not” - unspoken isothermal
assumption.

kGL = P
T

kGL =
(
∂P
∂T

)
S

=
(
∂S
∂V

)
P

These kGL are properties of the material.
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ISO

iso- is a prefix from the Greek isos, meaning ”equal.”

Equal in all parts/directions isotropic

Equal element isotopic

Equal Temperature: isothermal

Equal Pressure: isobaric

Equal Volume: isochoric = isovolumetric

Equal Enthalpic: isenthalpic

Equal Energy: isoenergetic

Equal Entropy: isentropic

Equal Heat: adiabatic
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Internal Energy for processes involving entropy and
volume

dU = TdS − PdV

=

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV

Equate coefficients to get:

1 T =
(
∂U
∂S

)
V

2 −P =
(
∂U
∂V

)
S

,

TdS equation

Tds = cV dT + T

(
∂P

∂T

)
v

dv

If no work is done (V constant)

∆U = Q (isochoric, no work)

note: d̄ qR = TdS for any
REVERSIBLE change with no
restriction on dV
Heat capacity
For reversible, isochoric heat flows:
CV = d̄ QV

dT = dUV
dT =

(
∂U
∂T

)
V

and CV = T dS
dT V

= T
(
∂S
∂T

)
V

From partial derivatives(
∂T
∂V

)
S

= −
(
∂P
∂S

)
V

,
a Maxwell’s relation.
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Enthalpy for processes involving entropy and
pressure H=U+PV

dH = dU + PdV + VdP

= TdS + VdP

dH =

(
∂H

∂S

)
P

dS +

(
∂H

∂P

)
S

dP

Equate coefficients to get:

1 T =
(
∂H
∂S

)
P

2 V =
(
∂H
∂P

)
S

TdS equation

Tds = cPdT − T

(
∂V

∂T

)
P

dP

Constant P0, only P0V work:

∆H = Q (Pf = Pi = P0),

∴ dH = TdS for isobaric process.
note d̄ qR = T dS for any
REVERSIBLE changes with no
restriction on dP.
Heat capacity
CP = d̄ QP

dT = dHP
dT =

(
∂H
∂T

)
P

and CP = T dSP
dT = T

(
∂S
∂T

)
P

From partial derivatives(
∂T
∂P

)
S

=
(
∂V
∂S

)
P

,
another Maxwell’s relation.
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Helmholtz for processes involving volume and
temperature F=U-TS

e.g. Chemicals in a closed container,
reactants dispersed in water.

dF = dU − TdS − SdT

= −PdV − SdT

=

(
∂F

∂V

)
T

dV +

(
∂F

∂T

)
V

dT

Equate coefficients to get:

1 −P =
(
∂F
∂V

)
T

2 −S =
(
∂F
∂T

)
V

Finally, second derivatives of F.(
∂P
∂T

)
V

=
(
∂S
∂V

)
T

,
another Maxwell’s relation.
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Gibbs for processes involving temperature and
pressure.

For systems open to pressure
transmitting medium, no
exchanging material.

dG = dH − TdS − SdT

= VdP − SdT

=

(
∂G

∂P

)
T

dP +

(
∂G

∂T

)
P

dT

Equate coefficients to get:

1 V =
(
∂G
∂P

)
T

2 −S =
(
∂G
∂T

)
P

from partial derivatives(
∂V
∂T

)
P

= −
(
∂S
∂P

)
T

,
another Maxwell’s relation.
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