
...Thermodynamics

Only two independent variables =⇒ Maxwell and other Relations

Equation of state as a 2D surface in a non-Euclidean space

Second Law in terms of properties of the system: Potentials U,H,F,G
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Max’s Maxwell Mnemonic

”Good Physicists Have Studied Under Very Fine Teachers”

Max Born (1882-1970, UoE 1936-52)
P and S have negative signs.

Potentials: coefficients in opposite corners, differentials adjacent. Sign
goes with coefficient. e.g. dF = −SdT − PdV
Maxwell: Use corners, signs and constants from the bottom variables. e.g.
dS

−dPT
= dV

dTP
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System minimises its Gibbs free energy at equilibrium

System in equilibrium with itself.
Mechanical and Thermal Equilibrium...
... between any two parts.
Pressure temperature “boundary”
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System in contact with a T0 & P0 reservoir, dG=0

Consider a system held at T0, P0, initially out of equilibrium.
Heat flows, and work is done as it equilibrates.

Change in surroundings
∆S0 = −Q/T0,
∆V0 = ∆V = W /P0

Eventually system reaches
equilibrium.

2nd law ∆Ssys + ∆S0 ≥ 0.
1st law Q = ∆U + P0∆V
Combined:
∆U + P0∆V − T0∆S ≤ 0

adiabatic wall

reservoir T0P0

TPQ

system

free diathermal
wall
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System goes to Equilibrium

Combined Laws: ∆U + P0∆V − T0∆S ≤ 0

Since P0 = Pi = Pf and T0 = Ti = Tf

∆U + (Pf Vf − PiVi )− (Tf Sf − TiSi ) ≤ 0
⇒ ∆U + ∆(PV )−∆(TS) ≤ 0
⇒ ∆(U + PV − TS) ≤ 0
⇒ ∆G ≤ 0

adiabatic wall

reservoir T0P0

TPQ

system

free diathermal
wall
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Any change moving towards equilibrium must reduce Gsys

Minimising Gsys is equivalent to maximising Ssys + S0: i.e. obeys 2nd law.

Graeme Ackland Lecture 9: Relationships between properties October 17, 2019 5 / 25



Two questions

Evaluate
(
∂V
∂P

)
s
?
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(dV/dP)s = ???

Compressibility of a particular
substance?
Half a Maxwell relation?
Adiabatic change in volume as
pressure increases?
Something to do with Power and
Voltage?
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Dependent and Independent Variables

In thermodynamic derivations, it is
not obvious what to choose as the
dependent variable.
This is the physics of the question.
The rest is just maths.

Ewe chews
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Example: The difference in heat capacities, CP − CV

What is the general relation between CP and CV ?

CP − CV = nR is valid only for an Ideal gas

Constant volume =⇒ no work. dU = TdS − PdV = TdS

CV = d̄ QV /dT =

(
∂U

∂T

)
V

= T

(
∂S

∂T

)
V

This suggests working with the entropy : S = S(T ,V )

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

For Cp = (∂H/∂T )p = T (∂S/∂T )p, differentiate wrt T at constant P.

CP = T

(
∂S

∂T

)
P

= T

(
∂S

∂T

)
V

(
∂T

∂T

)
P

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

Graeme Ackland Lecture 9: Relationships between properties October 17, 2019 9 / 25



Identify terms which are materials properties

CP = T

(
∂S

∂T

)
V

+ T

(
∂S

∂V

)
T

(
∂V

∂T

)
P

Introducing heat capacity

CV = T

(
∂S

∂T

)
V

and isobaric thermal expansivity:

β =
1

V

(
∂V

∂T

)
P

CP − CV = TVβ

(
∂S

∂V

)
T
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Eliminate the unmeasurable

CP − CV = TVβ

(
∂S

∂V

)
T

Recall S is not readily measurable, so use Maxwell to eliminate S .(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

= −
(
∂P

∂V

)
T

(
∂V

∂T

)
P

and introduce the isothermal bulk modulus and thermal expansivity (again)

= −V
(
∂P

∂V

)
T

1

V

(
∂V

∂T

)
P

=
1

V
KVβ = Kβ

K = −V
(
∂P
∂V

)
T

and β = 1
V

(
∂V
∂T

)
P

CP − CV = TVβ2K = TVβ2/κ

where κ = 1/K is the isothermal compressibility.
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Deconstruct CP − CV = TVβ2K = TVβ2/κ

CP − CV ∝ V =⇒ extensive quantity.

K is positive for all known substances.

β2 is positive.

CP > CV , even for negative thermal
expansion.

Difference is NOT due to work done
expanding the material.

CV = CP at the density maximum in water.

β is small except for gases, so CP ≈ CV .

So for solids and liquids we often (lazily)
just give “heat capacity”
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Ways and heat capacities: ĉ

Entropy and heat capacity depend on how may degrees of freedom are
available for heat.
1000cm−1 = 1439K: Not active at room temperature!
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Variations in CV and CP (Third derivatives)

What is
(
∂CV
∂V

)
T

?

(
∂CV

∂V

)
T

= T

(
∂

∂V

(
∂S

∂T

)
V

)
T

= T

(
∂

∂T

(
∂S

∂V

)
T

)
V

= T

(
∂

∂T

(
∂P

∂T

)
V

)
V

= T

(
∂2P

∂T 2

)
V

using a Maxwell relation. An analogous analysis for CP yields(
∂CP

∂P

)
T

= −T
(
∂2V

∂T 2

)
P

ĈV derivatives come directly from equation of state!

e.g.
(
∂CP
∂P

)
T

= 0 for Ideal Gas V=RT/P. (regardless of

monatomic/diatomic etc.)
Graeme Ackland Lecture 9: Relationships between properties October 17, 2019 14 / 25



Aside: Latent heats and the Lambda Function

Formally, cP is infinite at a phase transition (∆V 6= 0, ∆T = 0).
e.g. liquid He: the integral under the delta-function is the Latent Heat.

L =
∫ T+δT
T−δT cvdT
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The “energy equation”. Why demonstrations don’t work.

Relate the volume and pressure derivatives of the internal energy to
material properties and gradients of equation of state.
Differentiate dU = TdS − PdV , wrt dV and eliminate S using a Maxwell
relation:(

∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P = T

(
∂P

∂T

)
V

− P =
Tβ

κ
− P

Is force the derivative of energy? Compare F = −∇U, P = −
(
∂U
∂V

)
S
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Increasing energy under pressure

Similarly, differentiate dU = TdS − PdV , wrt dP and eliminate S using a
Maxwell relation:(

∂U

∂P

)
T

= −T
(
∂V

∂T

)
P

− P

(
∂V

∂P

)
T

= −TVβ + PVκT
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The ratio of heat capacities CP/CV

In the tutorial you will show

CP

CV
=
κT
κS

where κT and κS are the isothermal and adiabatic compressibilities:

κT = − 1

V

(
∂V

∂P

)
T

and κS = − 1

V

(
∂V

∂P

)
S

Another link between thermal and mechanical properties of materials.
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The entropy of an ideal gas, again

For entropy per mole s = s(T ,V ), we can always write

ds =

(
∂s

∂T

)
V

dT +

(
∂s

∂v

)
T

dV = cV
dT

T
+ βKdV

This equation applies to any fluid. β is thermal expansivity, K bulk
modulus.

For an Ideal gas βK = R/v and cv is a constant. Integration then gives

s = cv lnT + R ln v + s0

Similarly s = cP lnT − R lnP + s0.
Again, we relate changes in entropy to measurable quantities via the
equation of state.
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Availability

1904 Prince Piero Ginori Conti. generating electric energy from geothermal steam

How much work can be extracted from a system?

Depends on surroundings, but how?
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Availability - non Infinite reservoirs

Second-law for system with surrounding reservoir at T0, P0

∆S + ∆Ssurr ≥ 0

∆S − Q

T0
≥ 0

Q is heat transferred from the reservoir into the system.
First law for system gives Q = ∆U + P0∆V :

∆U + P0∆V − T0∆S ≤ 0

Define a new function called the Availability, A,

A = U − T0S + P0V
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Availability A = U − T0S + P0V

Availability is not Gibbs free energy.

Depends on both the system and surroundings. A(S ,V ,P0,T0),

Spontaneous changes in availability are always negative
∆A = ∆U − T0∆S + P0∆V ≤ 0

At equilibrium, nothing more can change: Availability is minimised

dA = dU − T0dS + P0dV = 0
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Availability incorporates all potentials

At equilibrium (T = T0, P = P0), dA = 0

If T = T0 & P = P0 A = U − TS + PV ∴ G is minimum
If T = T0 & V = const A = U − TS + const ∴ F is minimum

If S is const. & V = const A = U + const ∴ U is minimum
If S is const. & P = P0 A = U − const + PV ∴ H is minimum
If U is const. & V = const A = const − T0S ∴ S is maximum

Minimising Availability maximises entropy of the Universe.

Availability is minimised when system is in equilibrium with
surroundings.

Availability tells us how far from equilibrium we are
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Useful Work

The work P0∆V , is used to push back the environment.
The heat transfer could run an engine producing useful work.

∆U = Q −W = Q −W useful − P0∆V (1)

where Q is the heat transported from the surroundings to the system,

∆U + P0∆V − T0∆S + W useful = W useful −∆A ≤ 0

Maximum useful work is Wmax = −∆A. (iff all changes are reversible).
Likewise, with a small differential change of A:

dWuseful ≤ −dA = −dU + T0dS − P0dV

= (T0 − T )dS + (P − P0)dV
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Available for work

dWuseful ≤ (T0 − T )dS + (P − P0)dV
Useful work could come from

moving entropy (heat) from hot body (T ) to cold body (T0).

pushing a piston against a pressure (P0)

Once the availability is used up - no more work.
n.b. the system T changes as it equilibrates
Idealised engines had two infinite T-reservoirs, hot and cold.

Real engines need continual supply of energy to maintain the temperatures.
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