

.. Thermodynamics

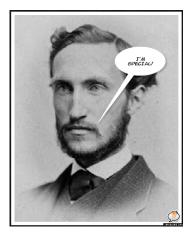
Only two independent variables \implies Maxwell and other Relations

Equation of state as a 2D surface in a non-Euclidean space

Second Law in terms of properties of the system: Potentials U,H,F,G

"Good Physicists Have Studied Under Very Fine Teachers"

Potentials: coefficients in opposite corners, differentials adjacent. Sign goes with coefficient. e.g. dF = -SdT - PdVMaxwell: Use corners, signs and constants from the bottom variables. e.g. $\frac{dS}{-dP_T} = \frac{dV}{dT_P}$

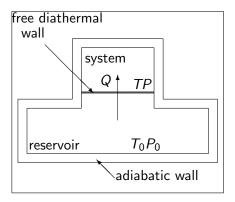


System in equilibrium with itself. Mechanical and Thermal Equilibrium... ... between any two parts. Pressure temperature "boundary" Consider a system held at T_0 , P_0 , initially out of equilibrium. Heat flows, and work is done as it equilibrates.

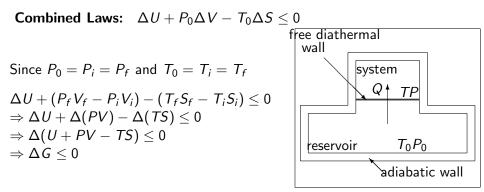
Change in surroundings $\Delta S_0 = -Q/T_0$, $\Delta V_0 = \Delta V = W/P_0$

Eventually system reaches equilibrium.

2nd law $\Delta S_{sys} + \Delta S_0 \ge 0$. 1st law $Q = \Delta U + P_0 \Delta V$ Combined: $\Delta U + P_0 \Delta V - T_0 \Delta S < 0$



System goes to Equilibrium



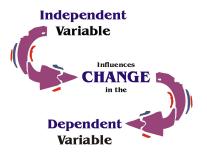
Any change moving towards equilibrium must reduce G_{sys} Minimising G_{sys} is equivalent to maximising $S_{sys} + S_0$: i.e. obeys 2nd law.

Evaluate $\left(\frac{\partial V}{\partial P}\right)_s$?

Graeme Ackland

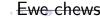
- Compressibility of a particular substance?
- Half a Maxwell relation?
- Adiabatic change in volume as pressure increases?
- Something to do with Power and Voltage?

Dependent and Independent Variables



In thermodynamic derivations, it is not obvious what to choose as the dependent variable.

This is the *physics* of the question. The rest is just maths.



Example: The difference in heat capacities, $C_P - C_V$

- What is the general relation between C_P and C_V ?
- $C_P C_V = nR$ is valid only for an Ideal gas
- Constant volume \implies no work. dU = TdS PdV = TdS

$$C_{V} = d^{2}Q_{V}/dT = \left(\frac{\partial U}{\partial T}\right)_{V} = T\left(\frac{\partial S}{\partial T}\right)_{V}$$

This suggests working with the entropy : S = S(T, V)

$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV$$

For $C_p = (\partial H / \partial T)_p = T (\partial S / \partial T)_p$, differentiate wrt T at constant P.

$$C_P = T\left(\frac{\partial S}{\partial T}\right)_P = T\left(\frac{\partial S}{\partial T}\right)_V \left(\frac{\partial T}{\partial T}\right)_P + T\left(\frac{\partial S}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P$$

Identify terms which are materials properties

$$C_{P} = T \left(\frac{\partial S}{\partial T}\right)_{V} + T \left(\frac{\partial S}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P}$$

Introducing heat capacity

$$C_V = T \left(\frac{\partial S}{\partial T}\right)_V$$

and isobaric thermal expansivity:

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$$
$$C_{P} - C_{V} = TV\beta \left(\frac{\partial S}{\partial V} \right)_{T}$$

Graeme Ackland

Eliminate the unmeasurable

$$C_P - C_V = TV\beta \left(\frac{\partial S}{\partial V}\right)_T$$

Recall S is not readily measurable, so use Maxwell to eliminate S.

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V} = -\left(\frac{\partial P}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P}$$

and introduce the isothermal bulk modulus and thermal expansivity (again)

$$= -V\left(\frac{\partial P}{\partial V}\right)_{T}\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{1}{V}KV\beta = K\beta$$

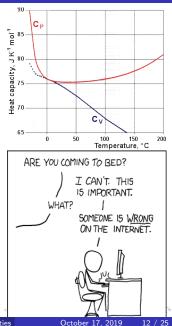
 $\mathcal{K} = -V\left(\frac{\partial P}{\partial V}\right)_T$ and $\beta = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_P$

$$C_P - C_V = TV\beta^2 K = TV\beta^2/\kappa$$

where $\kappa = 1/K$ is the isothermal compressibility.

Deconstruct $C_P - C_V = TV\beta^2 K = TV\beta^2/\kappa$

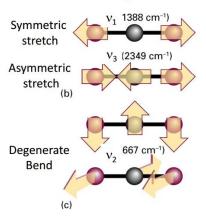
- $C_P C_V \propto V \implies$ extensive quantity.
- K is positive for all known substances.
- β^2 is positive.
- $C_P > C_V$, even for negative thermal expansion.
- Difference is NOT due to work done expanding the material.
- $C_V = C_P$ at the density maximum in water.
- β is small except for gases, so $C_P \approx C_V$.
- So for solids and liquids we often (lazily) just give "heat capacity"



Ways and heat capacities: \hat{c}

 $C_{p} - C_{y}$

γ



Gas	С _и (J-К ⁻¹ то	<i>C_p</i> ⊩¹)
Monatomic gas	ses	
He	12.5	20.8
Ar	12.5	20.8
Ne	12.7	20.8
Kr	12.3	20.8
Diatomic gases	s	
H ₂ [©] Http:/	/miniph ₂₀₄ ic	5 28.8
N2	20.8	29.1
0 ₂	21.1	29.4
cõ	21.0	29.3
CI	05.7	047

CO,

12.5	20.8	8.33	1.67
12.5	20.8	8.33	1.67
12.7	20.8	8.12	1.64
12.3	20.8	8.49	1.69
20.4	S 28.8	8.33	CO.41
20.8	29.1	8.33	1.40
21.1	29.4	8.33	1.40
21.0	29.3	8.33	1.40
25.7	34.7	8.96	1.35
28.5	37.0	8.50	1.30
32.4	40.4	9.00	1.29
27.0	35.4	8.37	1.30
	12.5 12.7 12.3 p 20.4 20.8 21.1 21.0 25.7 28.5 32.4	12.5 20.8 12.7 20.8 12.3 20.8 ph20.4 CS 28.8 20.8 29.1 21.1 29.4 21.0 29.3 25.7 34.7 28.5 37.0 32.4 40.4	12.5 20.8 8.33 12.7 20.8 8.12 12.3 20.8 8.49 p120.4 S.28.8 S.33 20.8 29.1 8.33 21.1 29.4 8.33 21.0 29.3 8.33 25.7 34.7 8.96 28.5 37.0 8.50 32.4 40.4 9.00

Entropy and heat capacity depend on how may degrees of freedom are available for heat. $1000 \text{ cm}^{-1} = 1439 \text{K}$: Not active at room temperature!

Graeme Ackland

Lecture 9: Relationships between properties

October 17, 2019 13 / 25

Variations in C_V and C_P (Third derivatives)

What is
$$\left(\frac{\partial C_V}{\partial V}\right)_T$$
?

$$\begin{pmatrix} \frac{\partial C_V}{\partial V} \end{pmatrix}_T = T \left(\frac{\partial}{\partial V} \left(\frac{\partial S}{\partial T} \right)_V \right)_T = T \left(\frac{\partial}{\partial T} \left(\frac{\partial S}{\partial V} \right)_T \right)_V$$
$$= T \left(\frac{\partial}{\partial T} \left(\frac{\partial P}{\partial T} \right)_V \right)_V = T \left(\frac{\partial^2 P}{\partial T^2} \right)_V$$

using a Maxwell relation. An analogous analysis for C_P yields

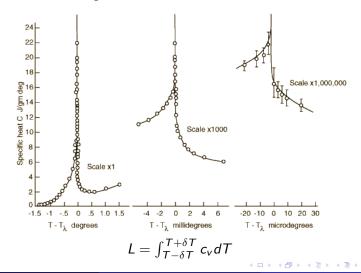
$$\left(\frac{\partial C_P}{\partial P}\right)_T = -T \left(\frac{\partial^2 V}{\partial T^2}\right)_P$$

 \hat{C}_{V} derivatives come directly from equation of state! e.g. $\left(\frac{\partial C_{P}}{\partial P}\right)_{T} = 0$ for Ideal Gas V=RT/P. (regardless of monatomic/diatomic etc.)

Graeme Ackland

Aside: Latent heats and the Lambda Function

Formally, c_P is infinite at a phase transition ($\Delta V \neq 0$, $\Delta T = 0$). e.g. liquid He: the integral under the delta-function is the Latent Heat.



Relate the volume and pressure derivatives of the internal energy to material properties and gradients of equation of state. Differentiate dU = TdS - PdV, wrt dV and eliminate S using a Maxwell relation:

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial S}{\partial V}\right)_{T} - P = T\left(\frac{\partial P}{\partial T}\right)_{V} - P = \frac{T\beta}{\kappa} - P$$

Is force the derivative of energy? Compare $F = -\nabla U$, $P = -\left(\frac{\partial U}{\partial V}\right)_S$

Similarly, differentiate dU = TdS - PdV, wrt dP and eliminate S using a Maxwell relation:

$$\left(\frac{\partial U}{\partial P}\right)_{T} = -T\left(\frac{\partial V}{\partial T}\right)_{P} - P\left(\frac{\partial V}{\partial P}\right)_{T} = -TV\beta + PV\kappa_{T}$$

In the tutorial you will show

$$\frac{C_P}{C_V} = \frac{\kappa_T}{\kappa_S}$$

where κ_T and κ_S are the isothermal and adiabatic compressibilities:

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$
 and $\kappa_S = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S$

Another link between thermal and mechanical properties of materials.

The entropy of an ideal gas, again

For entropy per mole s = s(T, V), we can always write

$$ds = \left(\frac{\partial s}{\partial T}\right)_{V} dT + \left(\frac{\partial s}{\partial v}\right)_{T} dV = c_{V} \frac{dT}{T} + \beta K dV$$

This equation applies to any fluid. β is thermal expansivity, K bulk modulus.

For an Ideal gas $\beta K = R/v$ and c_v is a constant. Integration then gives

$$s = c_v \ln T + R \ln v + s_0$$

Similarly $s = c_P \ln T - R \ln P + s_0$.

Again, we relate *changes* in entropy to measurable quantities via the equation of state.

Availability

1904 Prince Piero Ginori Conti. generating electric energy from geothermal steam

- How much work can be extracted from a system?
- Depends on surroundings, but how?

Graeme Ackland

Availability - non Infinite reservoirs

Second-law for system with surrounding reservoir at T_0 , P_0

$$\Delta S + \Delta S_{surr} \geq 0 \ \Delta S - rac{Q}{T_0} \geq 0$$

Q is heat transferred from the reservoir into the system. First law for system gives $Q = \Delta U + P_0 \Delta V$:

$$\Delta U + P_0 \Delta V - T_0 \Delta S \leq 0$$

Define a new function called the Availability, A,

$$A = U - T_0 S + P_0 V$$

- Availability is **not** Gibbs free energy.
- Depends on both the system and surroundings. $A(S, V, P_0, T_0)$,
- Spontaneous changes in availability are always negative $\Delta A = \Delta U T_0 \Delta S + P_0 \Delta V \le 0$
- At equilibrium, nothing more can change: Availability is minimised

$$dA = dU - T_0 dS + P_0 dV = 0$$

At equilibrium $(T = T_0, P = P_0), dA = 0$

If $T = T_0$	&	$P = P_0$	A = U - TS + PV		G is minimum
If $T = T_0$	&	V = const	A = U - TS + const	<i>.</i> .	F is minimum
If S is const.	&	V = const	A = U + const	<i>.</i> .	U is minimum
If S is const.	&	$P = P_0$	A = U - const + PV		H is minimum
If U is const.	&	V = const	$A = const - T_0S$		S is maximum

- Minimising Availability maximises entropy of the Universe.
- Availability is minimised when system is in equilibrium with surroundings.
- Availability tells us how far from equilibrium we are

The work $P_0\Delta V$, is used to push back the environment. The heat transfer could run an engine producing *useful work*.

$$\Delta U = Q - W = Q - W^{useful} - P_0 \Delta V \tag{1}$$

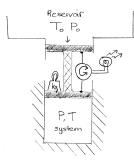
where Q is the heat transported from the surroundings to the system,

$$\Delta U + P_0 \Delta V - T_0 \Delta S + W^{useful} = W^{useful} - \Delta A \le 0$$

Maximum useful work is $W_{max} = -\Delta A$. (iff all changes are reversible). Likewise, with a small differential change of A:

$$dW_{useful} \leq -dA = -dU + T_0 dS - P_0 dV$$
$$= (T_0 - T)dS + (P - P_0)dV$$

Available for work



$$dW_{useful} \leq (T_0 - T)dS + (P - P_0)dV$$

Useful work could come from

- moving entropy (heat) from hot body (T) to cold body (T₀).
- pushing a piston against a pressure (P_0)

Once the availability is used up - no more work.

n.b. the system T changes as it equilibrates

Idealised engines had two infinite T-reservoirs, hot and cold.

Real engines need continual supply of energy to maintain the temperatures.