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Electrostatic potential between charged particles at an oil-water interface
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Electrostatic interactions between point charges embedded into interfaces separating dielectric media are
omnipresent in soft matter systems and often control their stability. Such interactions are typically complicated
and do not resemble their bulk counterparts. For instance, the electrostatic potential of a point charge at an
air-water interface falls off as r−3, where r is the distance from the charge, exhibiting a dipolar behavior. This
behavior is often assumed to be generic, and is widely referred to when interpreting experimental results. Here
we explicitly calculate the in-plane potential of a point charge at an interface between two electrolyte solutions
with different, finite dielectric permittivities and Debye screening lengths, such as oil and water. We show that the
asymptotic behavior of this potential is neither a dipole, which characterizes the potential at air-water interfaces,
nor a screened monopole, which describes the bulk behavior in a single electrolyte solution. By considering
the same problem in arbitrary dimensions, we find that the physics behind this difference can be traced to the
asymmetric propagation of the interaction in the two media. Our results should be relevant to understand the
effective potential acting between interfacial proteins in biofilms, and the self-assembly of charged colloids at
droplet surfaces in oil-water emulsions.
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The physics of charged objects at, or near, liquid in-
terfaces is full of subtle and nontrivial effects [1–12]. For
instance, charged particles trapped at the air-water interface
interact electrostatically via a long-range dipole-dipole repul-
sion, even if mobile ions screen any Coulombic interaction in
the water phase [2,13]; this interaction can be harnessed to
create tunable plasmonic materials [14]. An oil-water inter-
face can itself acquire a negative charge due to the adsorption
of hydroxyl ions [15], leading to a generic repulsion between
uncharged hard spheres trapped at the interface [16]. Inter-
facial electrostatics is also important in biological physics,
as it underlies the self-assembly of charged proteins within
biofilms [17], or at the droplet surfaces in water-oil emulsions
studied in food science [18].

A popular approximate treatment for electrostatic effects in
a bulk electrolyte is the Debye-Hückel theory [19], which is
valid when the electrostatic potential is small everywhere in
the system so that nonlinear effects can be disregarded. While
simplified, this theory includes the effects of ionic fluctuations
at a Gaussian level [3]. The main successful prediction of
the Debye-Hückel theory is that mobile ions in an electrolyte
generically screen charges, so that the potential of a point
charge is proportional to e−κr/r, instead of being ∼1/r. The
quantity κ is the inverse of the Debye screening length: it
depends on ionic charge and concentration, and quantifies the
efficiency of screening.

The Debye-Hückel theory has been generalized for sys-
tems with an interface [1–3,13], with most results focusing on
the case where one of the electrolytes has no mobile ions, so
that its Debye length is infinite. In this case, which is directly
relevant to air-water interfaces, the interaction potential of a
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point charge along the interface was shown to decay as r−3

[13], as for bulk dipolar interactions. While this result is not
directly applicable to interfaces separating media with finite,
yet different screening lengths, like oil-water interfaces, it
is often assumed that there should at least be a large range
of distances over which the r−3 decay is observed in such
situations as well (as reviewed, for instance, in [20]). Here
we demonstrate that this is in general not the case. We study
the simple but fundamental problem of a point charge at an
interface between two electrolytes with different (but finite)
Debye screening lengths (Fig. 1). We show that the in-plane
potential at the interface decays with an anomalous scal-
ing, which differs from both the screened Coulomb potential
characterizing charge interactions in bulk electrolytes and the
dipolar decay, relevant for water-air interfaces. We argue that
the potential we derive should regulate the self-assembly of
colloidal monolayers at oil-water interfaces, such as those
formed in “bijels” [21,22] or Pickering emulsions [23,24].

The problem we are interested in is sketched in Fig. 1. Two
point particles, each with charge Q, lie at the interface between
two dielectric media, with dielectric permittivities ε1 and ε2,
respectively. The interface is normal to the z axis and located
at z = 0, whereas r denotes positions on the plane parallel to
it (Fig. 1). While there are mobile ions in each of the two
media, there are no ions at the interface (the case of a salty
interface with mobile ions is qualitatively similar, and can
be dealt with via a modified boundary condition [3,25]). We
want to find the interparticle potential U (r) = Qφ(r), where
r is the interparticle distance and φ(r) is the value of the
electrostatic potential generated by the first particle at the
position of the second particle. The equation for φ is given
by the Maxwell equation ∇ · D = ρ, where D is the electric
displacement field and ρ = Qδ(r)δ(z) + ρion(r, z) is the total
charge density, which includes the interfacial point charge and
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FIG. 1. Schematics of the problem we consider. A pair of
charged point particles lies at the interface between two electrolytes
with different screening length and dielectric permittivities. The lines
connecting the two particles are examples of Debye strings contribut-
ing to the calculation of the interparticle potential (see text).

the ionic charges in the two media, ρion(r, z) [note δ(r) refers
to a two-dimensional Dirac delta function].

Following [1], we can find φ by using the Poisson-
Boltzmann theory in each of the two media to approximate
ρion = n0e−Ze0φ/kBT , with n0 the ionic concentration in the
bulk of that medium, Z the valence of the ions, e0 the
elementary charge, kB the Boltzmann constant, and T the
temperature. The linearized version of this equation, valid for
Ze0φ

kBT � 1, is given by

∇ · [ε(z)∇φ] − ε(z)κ2(z)φ = −Qδ(r)δ(z), (1)

where κ (z) is the inverse Debye length and ε(z) the dielectric
permittivity of the medium. For our geometry, the parame-
ters (ε(z), κ (z)) equal (ε1, κ1) for the first medium (z < 0),
and (ε2, κ2) for the second medium (z > 0). For an oil-water
interface, such as dodecane-water, typical values are κ1 ∼
10κ2 ∼ 1 μm−1, and ε1 ∼ 40ε2 ∼ 80ε0 (with ε0 the dielectric
permittivity of free space).

Introducing the in-plane Fourier transform, so that
φ(r, z) = (2π )−2

∫
dq eiq·rφ̂(q, z), in Eq. (1), we obtain the

electrostatic potential in the two half-spaces,

φ̂(q, z) = Ae
√

q2+κ2
1 z, z < 0,

φ̂(q, z) = Be−
√

q2+κ2
2 z, z > 0. (2)

From Eq. (1), it can be seen that the potential needs to be
continuous at z = 0, so that A = B, and that there needs to be
a discontinuity in its derivative, such that

ε2

[
∂φ

∂z

]
z→0+

− ε1

[
∂φ

∂z

]
z→0−

= −Q. (3)

As a result, the potential as a function of position on the
interface is given by the following (two-dimensional) inverse
Fourier transform [1,3,13],

φ(r) = Q

4π2

∫
d2q

eiq·r

ε1

√
κ2

1 + q2 + ε2

√
κ2

2 + q2
. (4)

We can also write φ(r) = Q
2πr I (r), in terms of the following

integral,

I (r) =
∫ ∞

0
dx

xJ0(x)

ε1

√
κ2

1 r2 + x2 + ε2

√
κ2

2 r2 + x2
, (5)

where we have defined r = |r|, and we have introduced
the zeroth-order Bessel function of the first kind, J0. The
asymptotic behavior of the interaction potential between two
interfacial point charges, U (r) = Qφ(r) = Q2I (r)/(2πr), is
determined by the integral I (r), which we study below.

Tailoring the procedure in [13] to our system, we express
the integral I (r) as

I (r) = 1

ε2
1 − ε2

2

[ε1I1(r) − ε2I2(r)], (6)

where

Ii(r) =
∫ ∞

0
dx

xJ0(x)
√

κ2
i r2 + x2

αr2 + x2
, i = 1, 2, (7)

with α = (ε2
1κ

2
1 − ε2

2κ
2
2 )/(ε2

1 − ε2
2 ).

As detailed in the Supplemental Material [25], these inte-
grals can be computed exactly to give, as a final result,

Ii = e−κir − e−κir
rδi

κi

∞∑
p=0

(−1)p

2p + 1

(
δi

κ2
i

)p

× 1F1

(
2p + 1;

3

2
+ p; − rδi

2κi

)
, (8)

where we have introduced δi ≡ α − κ2
i , and 1F1 is the con-

fluent hypergeometric function of the first kind [26]. The
asymptotic behavior for large values of rδi/(2κi) is given by

Ii ∼ −e−κir

[
κi

rδi
+ 3κ2

i

r2δ2
i

+ 1

r2δi
+ O

(
1

r3

)]
. (9)

For an oil-water interface, the integral I is dominated by I2

for r → ∞ (as κ2 < κ1). The corresponding leading asymp-
totic behavior for the interaction potential U between two
interfacial point charges is

U (r) ∼ Q2

2π

ε2κ2

ε2
1

(
κ2

1 − κ2
2

) e−κ2r

r2
. (10)

As κ2 → 0, which is relevant for an air-water interface,
Eq. (10) vanishes, so that we need to take the next term
in the expansion, and we recover the dipole contribution,
U (r) ∼ 1/r3, previously found and discussed in [2,13]. No-
tably, however, if κ2 �= 0, Eq. (10) differs from, and decays
faster than, a screened monopole with decay constant κ2: we
obtain U (r) ∼ e−κ2r/r2, rather than ∼e−κ2r/r. As expected, a
simple screened monopole behavior is found, from Eq. (4), in
the limiting case in which κ1 = κ2, where there is no interface.

The exact functional form of U (r), obtained by numeri-
cally evaluating the integral in Eq. (4), is compared to the
asymptotic behavior coming from Eq. (9) in Fig. 2, for an
oil-water interface. A good fit to the numerical solution for
all r is provided by

U (r) 	 Q2

2πε1

[
e−κ1r

r
+ ε2

ε1κ
2
1

e−κ2r

r3
+ ε2κ2

ε1κ
2
1

e−κ2r

r2

]
, (11)
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FIG. 2. Log-log plot of the numerical solution of Uε1/Q2 versus
κ1r, showing the crossover between small r behavior, corresponding
to a screened monopole with decay constant κ1, and asymptotic
behavior, computed via Eq. (9). The approximation in Eq. (11) is also
shown. Parameters are κ1 = 10κ2, ε1 = 40ε2, relevant for a water-oil
interface.

where we have accounted for the fact that κ2 � κ1 for an
oil-water interface. Equation (11) describes a crossover be-
tween a screened monopole behavior at small r—with the
decay length equal to that of the first medium, κ1—and the
∼e−κ2r/r2 behavior at large r. At intermediate r the second
term, which is a dipole contribution (with screening, as κ2 �=
0), can in principle play a role. For an oil-water interface the
crossover between screened monopole and dipole is at rc,1 =
− 2

κ1−κ2
W−1(− 1

2

√
ε2
ε1

κ1−κ2
κ1

) where W−1 denotes the negative

branch of the Lambert function [26]; the crossover between
dipole and asymptotic behavior instead occurs at rc,2 = κ−1

2
[27]. For parameters relevant to a dodecane-oil interface (Fig.
1), rc,1 	 9 μm and rc,2 ∼ 10 μm, so that the dipole regime
is essentially absent. For water-oil interfaces with ε1/ε2 ∼
40–100, the screened dipole regime is of practical relevance
only if κ1/κ2 
 10 (see Fig. 3 and [25]).

Equation (11) holds for pointlike particles and under the
assumption of weak electrostatic potential, or e0φ

kBT � 1. To
see whether relaxing these two simplifications changes the
results significantly, we also numerically solved the nonlinear
Poisson-Boltzmann equation for a charged colloidal particle
of finite radius R at an oil-water interface (see [25] for details).
Figure 4 shows the solution in 3D space and at the inter-
face, for three different colloidal charge distributions: uniform
[Fig. 4(a)], localized at the colloidal surface in the water
phase [Fig. 4(b)], or dissociated in water around the surface
[Fig. 4(c); this case is inspired by the physics discussed in [7]].
Notably, Eq. (11), with a renormalized, or effective, charge,
provides the far-field (large r) behavior in all cases, and yields

FIG. 3. Diagram showing the ranges in r where each of the
regimes in Eq. (11) dominates for the potential between two point
charges at an oil-water interface with ε1 = 80ε2.

(c)

(b)

(a)

FIG. 4. Results of nonlinear Poisson-Boltzmann simulations for
a charged colloid with κ1R = 1.2 at an oil-water interface (ε1 = 40ε2

and κ1 = 10κ2). In (a) the charge is uniformly distributed within the
colloid; in (b) it is at the colloid surface in the water phase; in (c) there
is additionally a charge distribution in the water phase which decays
exponentially from the colloid surface (decay length equal to κ−1

1 ).
(i) Heat map of the logarithm of the input charge distribution. (ii)
Heat map of the logarithm of the electrostatic potential solving the
nonlinear Poisson-Boltzmann equation. (iii) Electrostatic potential
on the interface (z = 0), as a function of r. The solid line is the fit to
the Debye-Hueckel (DH) solution, Eq. (11), with an effective charge.
For a full parameter list, see [25].

an excellent semiquantitative description for a large range of
distances. Details of the charge distribution matter for small
r, and determine the location of the crossover to far-field
behavior [Figs. 4(a)(iii),4(b)(iii),4(c)(iii)] and [25].

Experimental studies of charged colloids at an oil-water
interface typically report a good fit to a dipole potential, as for
air-water interfaces [9,10]. However, analyzing the potential
obtained by particle tracking in blinking optical traps for pairs
of weakly charged particles shows that a screened 1/r2 poten-
tial provides a better fit than a dipole for the far-field behavior
at a dodecane-water interface (Fig. S5 [25]). Interestingly, the
near field in these experiments is poorly predicted by Eq. (11),
whereas it is better described by Poisson-Boltzmann simu-
lations accounting for charge dissociation near the colloidal
surface, as in Fig. 4(c) (see Fig. S6 [25]).

To gain more physical insight into the physics behind
Eq. (10), it is useful to consider the same interfacial Debye-
Hückel problem defined by Eq. (1) in arbitrary dimension, d .
This problem is equivalent to that of finding the d-dimensional
Yukawa interaction at an interface. We find that, for generic
d � 3, the interfacial potential φ(r) is given by [25]

φ(r) = Q

(2π )(d−1)/2rd−2
Id ,

Id =
∫ ∞

0
dx

x(d−1)/2J(d−3)/2(x)

ε1

√
κ2

1 r2 + x2 + ε2

√
κ2

2 r2 + x2
, (12)
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where Jα (x), with α a real number, denotes the Bessel function
of the first kind of order α.

In the case when κ2 �= 0 (and κ2 � κ1), which gives the
d-dimensional analog of an oil-water interface, we find [25]
the following generic form for the potential in d � 3 and for
large r,

φ(r) ∼ e−κ2r

r (d+1)/2
. (13)

As in d = 3, while the dominant contribution is an expo-
nential screening with a typical length scale κ−1

2 , there is a
different power-law correction with respect to the Yukawa
potential in the bulk, which is φ(r) ∼ e−κ2r

r(d−1)/2 . In this d-
dimensional case, a suitable approximation for the potential
is therefore

φ(r) 	 Ad
e−κ1r

r (d−1)/2
+ Bd

e−κ2r

r (d+1)/2
, (14)

where Ad and Bd are d-dependent constants. (For simplicity
we neglect here intermediate regimes, which leads to a slightly
poorer approximation with respect to the d = 3 case [25].)

Mathematically, the difference in the power-law correction
for a particle at the interface arises due to the different struc-
ture in the branch-cut singularities in Eqs. (5) and (12) with
respect to the bulk case (κ1 = κ2). Specifically, as q → iκ2

there is a divergence in the bulk case, but not at the interface.
This is similar to what happens in polymer physics for a
random or self-avoiding walk close to a surface [28], where
a similar change in the nature of the singularity leads to a
change in the entropic exponent γ (the power-law correction),
with no change in the connective constant (the leading expo-
nential behavior). For instance, the probability that a random
walk with N steps forms a loop in d = 1 decays with N as
N−1/2, but close to a hard surface the same probability is
∼N−3/2 [29].

Physically, these considerations suggest a mechanism for
the change in asymptotic behavior for the potential between
two point charges at the interface, U (r). The integral de-
termining this potential may be viewed as an integral of a
propagator of a field, with κ1,2 playing the role of the in-
verse mass, or as a correlator in Landau-Ginzburg theory

[30]. Therefore the potential can be viewed as a sum of all
contributions from interactions propagating from one particle
to the other. The propagation occurs through lines which we
call “Debye strings” (Fig. 1). Computing the potential then
involves a summation over all fluctuating Debye strings. Be-
cause the two end points of a string are fixed at the interface
(at the point-charge positions), and because the screening in
the first phase (i.e., water) is stronger, the strings are more
likely to propagate through the second phase (i.e., oil). The
statistics of the Debye strings contributing to the interaction is
therefore different than in the bulk, where the propagation is
symmetric, and the problem becomes qualitatively similar to
that of a polymer close to a surface, thereby providing a simple
physical picture to explain the change in the power-law cor-
rection, or the anomalous asymptotic decay of the potential.

In summary, we have computed the potential of a point
charge at an interface between two electrolytes with distinct
Debye length and dielectric permittivity, such as oil and wa-
ter. We found that the asymptotic behavior of the potential
is anomalous, and, quite notably, it differs from a screened
charge monopole, which characterizes the interactions in the
bulk, and from a dipole, which describes interactions at an
air-water interface. An analysis of experimental data for the
interaction of charged colloidal particles at a dodecane-water
interface confirms that this anomalous far field describes ob-
servations more accurately than a dipole potential.

It will be of interest to extend our study to particles with
prescribed shapes, such as anisotropic colloids [31], sphero-
cylinders [32], RNA or DNA viruses, or interfacial proteins
encountered in biofilms or food [17,18]. It would also be
desirable to study situations where the interface is curved,
such as in a bijel or a water-oil Pickering emulsion. In the
latter case, the Debye strings linking interfacial particles could
either follow geodesics on the interface, or straight lines
through the water phase, according to which liquid is inside
the droplets. This can lead to further tunability and potential
for self-assembly, which could be experimentally probed by
the methods in [7]. In bijels, the asymmetry in Debye strings
may create an effective coupling between interfacial curvature
and particle concentration, potentially affecting the macro-
scopic properties of the emerging composite material [33].
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