Quantum Mechanics

Assessed problem sheet 1 - to be handed to TO by Thurs 20th October 5pm.

Two isomers of a molecule are different arrangements of the atoms that constitute the molecule. They are distinct quantum states: $|1\rangle,|2\rangle$.

The molecule can be modeled as a two-state system. Any state of this system can be written as a linear superposition of the two orthonormal states $|1\rangle$ and $|2\rangle$:

$$
|\psi\rangle=\alpha|1\rangle+\beta|2\rangle .
$$

Equivalently you can denote such a state as

$$
|\psi\rangle \equiv\binom{\alpha}{\beta} .
$$

The matrix elements of the Hamiltonian are defined as usual:

$$
H_{i j}=\langle i| \hat{H}|j\rangle .
$$

We can write the Hamiltonian in the basis $\{|1\rangle,|2\rangle\}$ as a 2×2 matrix:

$$
H=\left(\begin{array}{cc}
E_{1} & -\eta \\
-\eta & E_{2}
\end{array}\right) .
$$

Make sure that you use the notation in a consistent way.

1. Let us consider the state described by

$$
\frac{1}{\sqrt{5}}\binom{1+2 i}{0}
$$

Is the state normalized to one? What is the probability of the system being in state $|1\rangle$?
2. Write down the explicit expression for the diagonal elements of \hat{H}, and explain their physical interpretation.
3. Expand the time-evolution operator $\exp \left[-\frac{i}{\hbar} \hat{H} t\right]$ at first order in t. Assume that the system is in the state $|2\rangle$ at time $t=0$. Find the state of the system at time ϵ, up to terms that are $O\left(\epsilon^{2}\right)$. Interpret the physical meaning of η.
4. If $E_{1}=E_{2}=E$, and $|\Psi(0)\rangle=|2\rangle$, find $|\Psi(t)\rangle$.
5. Let us now consider the case where $E_{1}=E+\Delta E$, and $E_{2}=E-\Delta E$. Find the stationary states as linear combinations of $|1\rangle$ and $|2\rangle$.
6. Consider the system described above in question 5. Starting from $|\Psi(0)\rangle=|1\rangle$, find the probability for the system to be in the state $|1\rangle$ at time t.
7. Assuming $\Delta E \ll E$, discuss the limiting cases $\Delta E / \eta \ll 1$, and $\Delta E / \eta \gg 1$.

