Quantum Mechanics

Assessed problem sheet 2 - to be handed to TO by Thurs 10th November 5pm.

1. In one dimension, consider a particle coming in from the left with energy $E>0$ and scattering on the potential barrier:

$$
V(x)=g \delta(x)
$$

where g is some positive real number.
(a) Compute the transmission and reflection coefficients.
(b) Compare with the result for the finite potential step, Eq. (5.20) of the lecture notes, in the limit where $V \rightarrow \infty, a \rightarrow 0$, and $V a=g$ stays constant.
(c) What happens if $g<0$. Compare with the classical result.
2. The angular momentum operator in two dimensions can be defined as:

$$
\hat{L}=\hat{X} \hat{P}_{y}-\hat{Y} \hat{P}_{x}
$$

Rewrite the operator \hat{L} as a differential operator in polar coordinates. Show that the eigenvalues of L are $\hbar m$, where m is an integer, and find the eigenfunctions.
3. Write down the time-independent Schrödinger equation for a particle in a two-dimensional circular infinite well of radius R. Separate the variables by writing the wave function as:

$$
\psi(r, \theta)=R(r) \Phi(\theta)
$$

(a) Find the differential equation for the radial part of the wave function $R_{m}(r)$ for each value of the angular momentum m.
(b) The solution of the radial equation is given by the Bessel function $J_{|m|}(k r)$, where k is related to the energy E by $E=\hbar^{2} k^{2} /(2 m)$. Write down the boundary condition for this problem. Let us denote by $a_{n, m}$ the n-th zero of $J_{|m|}$. Find the energy levels as functions of the zeroes of the Bessel functions.
(c) For $m=0$ the first zero of the Bessel function $J_{0}(z)$ occurs for $z=2.405$. Deduce the value of the energy for the ground state of the system. Compare to the ground state energy of the two-dimensional infinite square potential well of size $L=\sqrt{\pi} R$.

