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12.1 Introduction

In this chapter, we are going to find explicitly the eigenfunctions and eigenvalues for the
time-independent Schrödinger equation for the one-dimensional harmonic oscillator. We
have already described the solutions in Chap. 3.

Recall that the tise for the 1-dimensional quantum harmonic oscillator is
�
P̂ 2

2m
+ 1

2mω2X̂2

�
un(x) = Enun(x) ,

which we write in Dirac notation as

Ĥ |n� = En |n� .

We have denoted by |n� the ket associated to the eigenfunctions un(x).

12.2 Factorizing the Hamiltonian

The Hamiltonian for the harmonic oscillator is:

Ĥ =
P̂ 2

2m
+

1

2
mω2X̂2 . (12.1)

Let us factor out �ω, and rewrite the Hamiltonian as:

Ĥ = �ω
�

P̂ 2

2m�ω +
mω

2� X̂2

�
. (12.2)

Checking the dimensions of the constants, you can readily verify that:

[�ω] = energy, [2mω�] = momentum2,

�
2�
mω

�
= length2 . (12.3)

Introducing the dimensionless quantities:

ξ̂ =

�
mω

2� X̂ , (12.4)

η̂ =
P̂

√
2m�ω

, (12.5)

the Hamiltonian becomes:
Ĥ = �ω

�
η̂2 + ξ̂2

�
. (12.6)
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The operators ξ̂ and η̂ are simply the position and the momentum operators rescaled by
some real constants; therefore both of them are Hermitean. Their commutation relation can
be easily computed using the canonical commutation relations:

�
ξ̂, η̂

�
=

1

2�

�
X̂, P̂

�
=

i

2
. (12.7)

If ξ̂ and η̂ were commuting variables, we would be tempted to factorize the Hamiltonian
as:

Ĥ = �ω
�
ξ̂ + iη̂

��
ξ̂ − iη̂

�
. (12.8)

We must be careful here, because the operators do not commute. So let us introduce:
�
â = ξ̂ + iη̂ ,

â† = ξ̂ − iη̂ ;
(12.9)

the expressions for â and â† in terms of X̂ and P̂ are:

â =

�
mω

2� X̂ + i√
2mω�

P̂

â† =

�
mω

2� X̂ −
i√

2mω�
P̂

.

We can then compute

ââ† = ξ̂2 + i
�
η̂, ξ̂

�
+ η̂2 , (12.10)

â†â = ξ̂2 − i
�
η̂, ξ̂

�
+ η̂2 . (12.11)

Summing the two equations above:

Ĥ =
�ω
2

�
ââ† + â†â

�
(12.12)

Subtracting the same two equations yields the commutation relation between â and â†:

�
â, â†

�
= 1 . (12.13)

This commutation relations plays an important role in the rest of this chapter.
An alternative, and more useful, expression for Ĥ is

Ĥ =
�
â†â+ 1

2

�
�ω . (12.14)
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12.3 Creation and annihilation

We are now going to find the eigenvalues of Ĥ using the operators â and â†. First let us
compute the commutators [Ĥ, â] and [Ĥ, â†]:

[Ĥ, â] = [
�
â†â+ 1

2

�
�ω, â] = �ω[â†â, â] since [12 , â] = 0 .

Now
[â†â, â] = â†ââ− ââ†â = [â†, â]â = −â ,

so that we obtain

[Ĥ, â] = −�ωâ . (12.15)

Similarly

[Ĥ, â†] = [
�
â†â+ 1

2

�
�ω, â†] = �ω[â†â, â†] since [12 , â

†] = 0 ,

and
[â†â, â†] = â†ââ† − â†â†â = â†[â, â†] = â† ,

so that we obtain

[Ĥ, â†] = �ωâ† . (12.16)

Let us now compute:

Ĥ
�
â|n�

�
= ˆ̂aĤ|n�+

�
Ĥ, â

�
|n� , (12.17)

= Enâ|n� − �ωâ|n� , (12.18)

= (En − �ω)
�
â|n�

�
. (12.19)

We have found an eigenvalue equation: it states that â |n� is an eigenfunction of Ĥ belonging
to the eigenvalue (En − �ω), unless â |n� ≡ 0. We say that the operator â is a lowering

operator ; its action on an energy eigenstate is to turn it into another energy eigenstate of
lower energy. It is also called an annihilation operator, because it removes one quantum of
energy �ω from the system.

Similarly it is straightforward to show that

Ĥâ† |n� = (En + �ω)â† |n� ,

which says that â† |n� is an eigenfunction of Ĥ belonging to the eigenvalue (En+ �ω), unless
â† |n� ≡ 0. We say that the operator â† is a raising operator ; its action on an energy
eigenstate is to turn it into another energy eigenstate of higher energy. It is also called an
creation operator, because it adds one quantum of energy �ω to the system.
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We can summarise these results by denoting the states of energy En ± �ω by |n± 1� and
writing

â |n� = cn |n− 1� and â† |n� = dn |n+ 1� ,

where cn and dn are constants of proportionality (NOT eigenvalues!) and

Ĥ |n− 1� = En−1 |n− 1� = (En − �ω) |n− 1�

Ĥ |n+ 1� = En+1 |n+ 1� = (En + �ω) |n+ 1� .

12.4 Eigensystem

12.4.1 Eigenvalues

It should be clear that repeated application of the lowering operator, â, generates states of
successively lower energy ad infinitum unless there is a state of lowest energy ; application of
the operator to such a state must yield zero identically (because otherwise we would be able
to generate another state of lower energy still, a contradiction).

Is there such a state? The answer is yes because the Hamiltonian can only have positive
eigenvalues. Consider the expectation value of Ĥ in an arbitrary state |Ψ�:

�Ĥ� = �
p̂2

2m
�+ �

1
2mω2x2� ,

and both terms on the right hand side are non-negative. Thus there cannot be any states of
negative energy.

We denote the state of lowest energy, or ground state, by |0�. Then since there cannot
be a state of lower energy,

â |0� = 0 .

Applying the Hamiltonian to this state we see that

Ĥ |0� = �ω (â†â+ 1
2) |0� =

1
2�ω |0� ≡ E0 |0� .

Thus we have found the ground state energy: E0 =
1
2�ω. Application of the raising operator

to the ground state generates the state |1� with energy E1 = 3
2�ω, whilst n applications of

the raising operator generates the state |n� with energy (n+ 1
2)�ω, so that

En = (n+ 1
2)�ω n = 0, 1, 2, 3, . . . ,

which is the previously quoted result for the energy eigenvalues of the 1-dimensional oscillator!
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12.4.2 Normalisation of Eigenstates

Requiring that both |n� and |n − 1� be normalised enables us to determine the constant of
proportionality cn. Consider

�n|â†â|n� = cn �n|â
†
|n− 1� from property of â

= cn �n− 1|â|n�∗ from definition of †

= cn c
∗
n �n− 1|n− 1�∗ from property of â

= |cn|
2 since �n− 1|n− 1�∗ = 1 .

We can evaluate the left-hand side if we note that â†â =
�
Ĥ/�ω

�
−

1
2 , giving

�n|â†â|n� = n �n|n� = n .

Thus |cn|2 = n and if we choose the phase so that cn is real we can write

cn =
√
n .

A similar calculation shows that

�n|ââ†|n� = |dn|
2 = (n+ 1) ,

so that if we again choose the phase so that dn is real we obtain

dn =
√
n+ 1 .

In summary then we have

â |n� =
√
n |n− 1� and â† |n� =

√
n+ 1 |n+ 1�

12.4.3 Wave functions

Finally let us show that we can reproduce the analytic expression for the eigenfunctions of
the energy.

The ground state is defined by the relation:

â|0� = 0 . (12.20)

We can rewrite the equation above as a differential operator acting on the wave function of
the ground state u0(x):

âu0(x) =

��
mω

2� X̂ +
i

√
2mω�

P̂

�
u0(x) (12.21)

=

��
mω

2� x+
�

√
2mω

d

dx

�
u0(x) (12.22)

= 0 . (12.23)
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Hence:

d

dx
u0(x) = −

�
2mω

�

�
mω

2� xu0(x) (12.24)

= −
mω

� xu0(x) (12.25)

= −α2xu0(x) , (12.26)

where α2 = mω/�. The solution of the equation above is the Gaussian that we have already
seen in Chap. 3:

u0(x) = C0 exp[−α2x2/2] . (12.27)

Every other eigenfunctions is obtained by repeatedly applying the creation operator â†

to ground state:

un(x) =
1

√
n!

�
â†
�n

u0(x) . (12.28)

Remember that â† is just a differential operator acting on wave functions. Check that you
can reproduce the wave functions for the first and second excited states of the harmonic
oscillator.

12.5 Summary

As usual, we summarize the main concepts introduced in this lecture.

• Raising and lowering operators; factorization of the Hamitonian.

• Commutation relations and interpretation of the raising and lowering operators.

• Existence of the ground states, construction and normalization of the excited states.
Eigenvalues of the Hamiltonian.

• Construction of the wave functions.
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