Lecture 13

Angular momentum - Reloaded

13.1 Introduction

In previous lectures we have introduced the angular momentum starting from the classical expression:

$$
\begin{equation*}
\underline{L}=\underline{r} \times \underline{p}, \tag{13.1}
\end{equation*}
$$

and have defined a quantum mechanical operator by replacing \underline{r} and \underline{p} with the corresponding operators: Eq. (13.1) then defines a triplet of differential operators acting on the wave functions. The eigenvalue equations for \hat{L}^{2} and \hat{L}_{z} can be written as differential equations, whose solutions yield the eigenvalues and the eigenfunctions of the angular momentum.

In this lecture we are going to follow a different approach, and derive the quantization of angular momentum directly from the commutations relations of the components of \underline{L}. This approach is more generic and does not rely on the specific realization of the angular momentum as a differential operator. We will use in this context the symbol $\underline{\hat{J}}$ to denote the angular momentum. Remember that $\underline{\hat{J}}$ is a vector, i.e. it is a triplet of operators. In Cartesian coordinates $\underline{\hat{J}}=\left(\hat{J}_{x}, \hat{J}_{y}, \hat{J}_{z}\right)$, and the commutation relations are: Recall that the commutation relations are

$$
\begin{equation*}
\left[\hat{J}_{x}, \hat{J}_{y}\right]=i \hbar \hat{J}_{z} \quad\left[\hat{J}_{y}, \hat{J}_{z}\right]=i \hbar \hat{J}_{x} \quad\left[\hat{J}_{z}, \hat{J}_{x}\right]=i \hbar \hat{J}_{y} . \tag{13.2}
\end{equation*}
$$

The square of the angular momentum is represented by the operator

$$
\begin{equation*}
\hat{J}^{2} \equiv \hat{J}_{x}^{2}+\hat{J}_{y}^{2}+\hat{J}_{z}^{2} \tag{13.3}
\end{equation*}
$$

with the property that

$$
\begin{equation*}
\left[\hat{J}^{2}, \hat{J}_{x}\right]=\left[\hat{J}^{2}, \hat{J}_{y}\right]=\left[\hat{J}^{2}, \hat{J}_{z}\right]=0 \tag{13.4}
\end{equation*}
$$

The Compatibility Theorem tells us that, for example, the operators \hat{J}^{2} and \hat{J}_{z} have simultaneous eigenstates. We denote these common eigenstates by $|\lambda, m\rangle$. Looking back at the results obtained in the previous lectures, these are the kets associated to the sperical harmonics $Y_{\ell}^{m}(\theta, \phi)$. We can write:

$$
\begin{align*}
\hat{J}^{2}|\lambda, m\rangle & =\lambda \hbar^{2}|\lambda, m\rangle \tag{13.5}\\
\hat{J}_{z}|\lambda, m\rangle & =m \hbar|\lambda, m\rangle \tag{13.6}
\end{align*}
$$

so that the eigenvalues of \hat{J}^{2} are denoted by $\lambda \hbar^{2}$ whilst those of \hat{J}_{z} are denoted by $m \hbar$.

13.2 The Eigenvalue Spectra of \hat{J}^{2} and \hat{J}_{z}

We now address the problem of finding the allowed values of λ and m. We introduce raising and lowering operators:

$$
\begin{equation*}
\hat{J}_{ \pm} \equiv \hat{J}_{x} \pm i \hat{J}_{y} \tag{13.7}
\end{equation*}
$$

and calculate the commutators with \hat{J}^{2} and \hat{J}_{z}. Since \hat{J}^{2} commutes with both \hat{J}_{x} and \hat{J}_{y} we get immediately that

$$
\begin{equation*}
\left[\hat{J}^{2}, \hat{J}_{ \pm}\right]=0 \tag{13.8}
\end{equation*}
$$

whilst

$$
\begin{equation*}
\left[\hat{J}_{z}, \hat{J}_{+}\right]=\left[\hat{J}_{z}, \hat{J}_{x}\right]+i\left[\hat{J}_{z}, \hat{J}_{y}\right]=i \hbar \hat{J}_{y}+i\left(-i \hbar \hat{J}_{x}\right)=\hbar \hat{J}_{+}, \tag{13.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\hat{J}_{z}, \hat{J}_{-}\right]=\left[\hat{J}_{z}, \hat{J}_{x}\right]-i\left[\hat{J}_{z}, \hat{J}_{y}\right]=i \hbar \hat{J}_{y}-i\left(-i \hbar \hat{J}_{x}\right)=-\hbar \hat{J}_{-} . \tag{13.10}
\end{equation*}
$$

The structure of these commutation relations should remind you of the harmonic oscillator problem: we can show that \hat{J}_{+}and \hat{J}_{-}act as raising and lowering operators, not for the total energy but for the z-component of the angular momentum.

Consider the action of the commutator in Eq. (13.9) on an eigenstate $|\lambda, m\rangle$:

$$
\begin{equation*}
\left[\hat{J}_{z}, \hat{J}_{+}\right]|\lambda, m\rangle \equiv\left(\hat{J}_{z} \hat{J}_{+}-\hat{J}_{+} \hat{J}_{z}\right)|\lambda, m\rangle=\hbar \hat{J}_{+}|\lambda, m\rangle \tag{13.11}
\end{equation*}
$$

but we can use the eigenvalue equation $\hat{J}_{z}|\lambda, m\rangle=m \hbar|\lambda, m\rangle$ to rewrite this as

$$
\begin{equation*}
\hat{J}_{z} \hat{J}_{+}|\lambda, m\rangle=(m+1) \hbar \hat{J}_{+}|\lambda, m\rangle \text {, } \tag{13.12}
\end{equation*}
$$

which says that $\hat{J}_{+}|\lambda, m\rangle$ is also an eigenstate of \hat{J}_{z} but with eigenvalue $(m+1) \hbar$, unless $\hat{J}_{+}|\lambda, m\rangle \equiv 0$. Thus the operator \hat{J}_{+}acts as a raising operator for the z-component of angular momentum.

Similarly the second commutator can be used to show that

$$
\begin{equation*}
\hat{J}_{z} \hat{J}_{-}|\lambda, m\rangle=(m-1) \hbar \hat{J}_{-}|\lambda, m\rangle \tag{13.13}
\end{equation*}
$$

which says that $\hat{J}_{-}|\lambda, m\rangle$ is also an eigenstate of \hat{J}_{z} but with eigenvalue $(m-1) \hbar$, unless $\hat{J}_{-}|\lambda, m\rangle \equiv 0$. Thus the operator \hat{J}_{-}acts as a lowering operator for the z-component of angular momentum.

Notice that since $\left[\hat{J}^{2}, \hat{J}_{ \pm}\right]=0$ we have

$$
\begin{equation*}
\hat{J}^{2}\left(\hat{J}_{ \pm}|\lambda, m\rangle\right)=\hat{J}_{ \pm}\left(\hat{J}^{2}|\lambda, m\rangle\right)=\lambda \hbar^{2}\left(\hat{J_{ \pm}}|\lambda, m\rangle\right) \tag{13.14}
\end{equation*}
$$

so that the states generated by the action of $\hat{J}_{ \pm}$are still eigenstates of \hat{J}^{2} belonging to the same eigenvalue $\lambda \hbar^{2}$. Thus we can write

$$
\begin{aligned}
\hat{J}_{+}|\lambda, m\rangle & =c_{+} \hbar|\lambda, m+1\rangle \\
\hat{J}_{-}|\lambda, m\rangle & =c_{-} \hbar|\lambda, m-1\rangle
\end{aligned}
$$

where $c_{ \pm}$are constants of proportionality.

We now observe that, for a given $\lambda, m^{2} \leq \lambda$ so that m must have both a maximum value, $m_{\max }$, and a minimum value, $m_{\text {min }}$.

Proof:

$$
\begin{aligned}
\left(\hat{J}^{2}-\hat{J}_{z}^{2}\right)|\lambda, m\rangle & =\left(\hat{J}_{x}{ }^{2}+\hat{J}_{y}{ }^{2}\right)|\lambda, m\rangle \quad \text { implying that } \\
\left(\lambda-m^{2}\right) \hbar^{2}|\lambda, m\rangle & =\left(\hat{J}_{x}{ }^{2}+\hat{J}_{y}{ }^{2}\right)|\lambda, m\rangle
\end{aligned}
$$

Taking the scalar product with $\langle\lambda, m|$ yields

$$
\left(\lambda-m^{2}\right) \hbar^{2}=\left\langle\hat{J}_{x}^{2}+\hat{J}_{y}^{2}\right\rangle \geq 0
$$

so that

$$
\begin{equation*}
\lambda-m^{2} \geq 0 \quad \text { or } \quad-\sqrt{\lambda} \leq m \leq \sqrt{\lambda} \tag{13.15}
\end{equation*}
$$

Hence the spectrum of \hat{J}_{z} is bounded above and below, for a given λ. We can deduce that

$$
\begin{aligned}
\hat{J}_{+}\left|\lambda, m_{\max }\right\rangle & =0, \quad \text { and } \\
\hat{J}_{-}\left|\lambda, m_{\min }\right\rangle & =0
\end{aligned}
$$

To proceed further, we need a couple of identities for \hat{J}^{2} which follow from the definitions of $\hat{J_{ \pm}}$. Noting that

$$
\begin{aligned}
& \hat{J}_{+} \hat{J}_{-}=\hat{J}_{x}{ }^{2}+\hat{J}_{y}{ }^{2}+i \hat{J}_{y} \hat{J}_{x}-i \hat{J}_{x} \hat{J}_{y}=\hat{J}_{x}{ }^{2}+\hat{J}_{y}{ }^{2}+\hbar \hat{J}_{z} \\
& \hat{J}_{-} \hat{J}_{+}=\hat{J}_{x}{ }^{2}+\hat{J}_{y}{ }^{2}-i \hat{J}_{y} \hat{J}_{x}+i \hat{J}_{x} \hat{J}_{y}=\hat{J}_{x}{ }^{2}+\hat{J}_{y}{ }^{2}-\hbar \hat{J}_{z}
\end{aligned}
$$

we can write

$$
\begin{align*}
\hat{J}^{2} & \equiv \hat{J}_{+} \hat{J}_{-}-\hbar \hat{J}_{z}+\hat{J}_{z}^{2} \tag{13.16}\\
\hat{J}^{2} & \equiv \hat{J}_{-} \hat{J}_{+}+\hbar \hat{J}_{z}+\hat{J}_{z}^{2}
\end{align*}
$$

Applying the first of these to the state of minimum m, we find

$$
\begin{aligned}
\hat{J}^{2}\left|\lambda, m_{\min }\right\rangle & =\left(\hat{J}_{+} \hat{J}_{-}-\hbar \hat{J}_{z}+\hat{J}_{z}^{2}\right)\left|\lambda, m_{\min }\right\rangle \\
& =\left(-m_{\min } \hbar^{2}+m_{\min }^{2} \hbar^{2}\right)\left|\lambda, m_{\min }\right\rangle, \quad \text { since } \hat{J}_{-}\left|\lambda, m_{\min }\right\rangle=0 \\
& =m_{\min }\left(m_{\min }-1\right) \hbar^{2}\left|\lambda, m_{\min }\right\rangle \\
& \equiv \lambda \hbar^{2}\left|\lambda, m_{\min }\right\rangle
\end{aligned}
$$

Thus we deduce that

$$
\lambda=m_{\min }\left(m_{\min }-1\right)
$$

Similarly, using the second of the two identities for \hat{J}^{2}

$$
\begin{aligned}
\hat{J}^{2}\left|\lambda, m_{\max }\right\rangle & =\left(\hat{J}_{-} \hat{J}_{+}+\hbar \hat{J}_{z}+\hat{J}_{z}^{2}\right)\left|\lambda, m_{\max }\right\rangle \\
& =\left(m_{\max } \hbar^{2}+m_{\max }^{2} \hbar^{2}\right)\left|\lambda, m_{\max }\right\rangle, \quad \text { since } \hat{J}_{+}\left|\lambda, m_{\max }\right\rangle=0 \\
& =m_{\max }\left(m_{\max }+1\right) \hbar^{2}\left|\lambda, m_{\max }\right\rangle \\
& \equiv \lambda \hbar^{2}\left|\lambda, m_{\max }\right\rangle
\end{aligned}
$$

and hence we obtain a second expression for λ :

$$
\lambda=m_{\max }\left(m_{\max }+1\right)
$$

Usually, $m_{\text {max }}$ is denoted by j and so we write this as

$$
\lambda=j(j+1)=m_{\min }\left(m_{\min }-1\right)
$$

This is a quadratic equation for $m_{\text {min }}$:

$$
m_{\min }^{2}-m_{\min }-j^{2}-j=0
$$

which can be factorised:

$$
\left(m_{\min }+j\right)\left(m_{\min }-j-1\right)=0
$$

and we see that, since $m_{\min } \leq j$ by definition, the only acceptable root is

$$
m_{\min }=-j
$$

Now since $m_{\text {max }}$ and $m_{\text {min }}$ differ by some integer, k, say, we can write

$$
m_{\max }-m_{\min }=k, \quad k=0,1,2,3, \ldots
$$

or

$$
j-(-j) \equiv 2 j=k, \quad k=0,1,2,3, \ldots,
$$

so that the allowed values of j are

$$
\begin{equation*}
j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \tag{13.17}
\end{equation*}
$$

For a given value of j, we see that m ranges over the values

$$
\begin{equation*}
j, j-1, \ldots,-j+1,-j \tag{13.18}
\end{equation*}
$$

a total of $(2 j+1)$ values.

13.3 Nomenclature

From the results presented above we can draw the following conclusions.

- The eigenvalues of \hat{J}^{2} are $j(j+1) \hbar^{2}$, where j is one of the allowed values

$$
j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots .
$$

- Since $\lambda=j(j+1)$, we can equally well label the simultaneous eigenstates of \hat{J}^{2} and \hat{J}_{z} by j rather than by λ so that

$$
\begin{aligned}
\hat{J}^{2}|j, m\rangle & =j(j+1) \hbar^{2}|j, m\rangle \quad \text { and } \\
\hat{J}_{z}|j, m\rangle & =m \hbar|j, m\rangle
\end{aligned}
$$

- For a given value of j, there are $(2 j+1)$ possible eigenvalues of \hat{J}_{z}, denoted by $m \hbar$, where m runs from j to $-j$ in integer steps.
- The set of $(2 j+1)$ states $\{|j, m\rangle\}$ is called a multiplet.

13.4 Normalization

We need to determine the constants of proportionality $c_{ \pm}$that appear in the equations

$$
\begin{aligned}
& \hat{J}_{+}|j, m\rangle=c_{+} \hbar|j, m+1\rangle \\
& \hat{J}_{-}|j, m\rangle=c_{-} \hbar|j, m-1\rangle
\end{aligned}
$$

Let us consider

$$
\begin{aligned}
\langle j, m| \hat{J}_{-} \hat{J}_{+}|j, m\rangle & =c_{+} \hbar\langle j, m| \hat{J}_{-}|j, m+1\rangle \\
& =c_{+} \hbar\langle j, m+1|\left(\hat{J}_{-}\right)^{\dagger}|j, m\rangle^{*}, \quad \text { from the definition of } \dagger \\
& =c_{+} \hbar\langle j, m+1| \hat{J}_{+}|j, m\rangle \quad \text { since }\left(\hat{J}_{-}\right)^{\dagger}=\hat{J}_{+} \\
& =c_{+} c_{+}^{*} \hbar^{2}\langle j, m+1 \mid j, m+1\rangle \\
& =\left|c_{+}\right|^{2} \hbar^{2}, \quad \text { from orthonormality } .
\end{aligned}
$$

But we can evaluate the left hand side by making use of the identity Eq. (13.16):

$$
\hat{J}_{-} \hat{J}_{+}=\hat{J}^{2}-\hat{J}_{z}^{2}-\hbar \hat{J}_{z}
$$

yielding

$$
\begin{aligned}
\langle j, m| \hat{J}_{-} \hat{J}_{+}|j, m\rangle & =\langle j, m| \hat{J}^{2}-\hat{J}_{z}{ }^{2}-\hbar \hat{J}_{z}|j, m\rangle \\
& =\langle j, m| j(j+1) \hbar^{2}-m^{2} \hbar^{2}-m \hbar^{2}|j, m\rangle \\
& =[j(j+1)-m(m+1)] \hbar^{2}, \quad \text { from orthonormality } .
\end{aligned}
$$

Thus we obtain

$$
\left|c_{+}\right|^{2}=j(j+1)-m(m+1) .
$$

In similar fashion,

$$
\begin{aligned}
\langle j, m| \hat{J}_{+} \hat{J}_{-}|j, m\rangle & =c_{-} \hbar\langle j, m| \hat{J}_{+}|j, m-1\rangle \\
& =c_{-} \hbar\langle j, m-1|\left(\hat{J}_{+}\right)^{\dagger}|j, m\rangle^{*}, \quad \text { from the definition of } \dagger \\
& =c_{-} \hbar\langle j, m-1| \hat{J}_{-}|j, m\rangle, \quad \text { since }\left(\hat{J}_{+}\right)^{\dagger}=\hat{J}_{-} \\
& =c_{-} c_{-}^{*} \hbar^{2}\langle j, m-1 \mid j, m-1\rangle \\
& =\left|c_{-}\right|^{2} \hbar^{2}, \quad \text { from orthonormality } .
\end{aligned}
$$

together with the other identity

$$
\hat{J}_{+} \hat{J}_{-}=\hat{J}^{2}-\hat{J}_{z}^{2}+\hbar \hat{J}_{z}
$$

yields

$$
\left|c_{-}\right|^{2}=j(j+1)-m(m-1) .
$$

Condon-Shortley Phase Convention

Taking $c_{ \pm}$to be real and positive gives

$$
\begin{equation*}
c_{ \pm}=\sqrt{j(j+1)-m(m \pm 1)} . \tag{13.19}
\end{equation*}
$$

13.5 Matrix Representations

For a given j, the quantities $\left\langle j, m^{\prime}\right| \hat{J}_{z}|j, m\rangle$ are known as the matrix elements of \hat{J}_{z}. We can calculate what they are as follows:

$$
\begin{equation*}
\left\langle j, m^{\prime}\right| \hat{J}_{z}|j, m\rangle=m \hbar\left\langle j, m^{\prime} \mid j, m\right\rangle=m \hbar \delta_{m^{\prime}, m}, \tag{13.20}
\end{equation*}
$$

where we have used the orthonormality properties of the basis. Why matrix elements? As we have already seen, we can regard the labels m^{\prime} and m as labelling the rows and columns,
respectively, of a matrix. Given that m^{\prime} and m can each take $(2 j+1)$ values, the matrix in question is $(2 j+1) \times(2 j+1)$.

Similarly, the matrix elements of the raising and lowering operators are given by

$$
\left\langle j, m^{\prime}\right| \hat{J}_{ \pm}|j, m\rangle=c_{ \pm} \hbar\left\langle j, m^{\prime} \mid j, m \pm 1\right\rangle=\sqrt{j(j+1)-m(m \pm 1)} \hbar \delta_{m^{\prime}, m \pm 1}
$$

Check that for $j=1$ you recover the results obtained in Q4 of Problem Sheet 5.

13.6 Summary

As usual, we summarize the main concepts introduced in this lecture.

- Properties of the angular momentum from commutation relations.
- Derivation of the eigenvalue spectrum.
- Eigenstates and normalization.
- Matrix representations.

