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14.1 Introduction

Using the commutation relations of the components of the angular momentum we have found
that the allowed eigenvalues for Ĵ2 are �2j(j + 1), where j = 0, 12 , 1

3
2 , . . .. For each value of

j, the eigenvalues of Jz are �m, with m = −j,−j + 1, . . . , j − 1, j.
Comparing with the solutions of the eigensystem discussed in lecture 8, we see that we

have found more solutions than there are in Eq. (8.21). Eq. (8.21) is a partial differential
equation in θ and φ. The solutions of this equation are the sperical harmonics Y m

� (θ,φ),
Eq. (8.22). We can see from the explicit expression for the spherical harmonics that the φ
dependence is simply:

Y m
� (θ,φ) ∝ exp(imφ) , (14.1)

as expected, since the spherical harmonics are also eigenfunctions of Lz = −i� ∂
∂φ . Since we

required that wave functions must be single-valued, the sperical harmonics must be periodic
in φ with period 2π:

Y m
� (θ,φ) = Y m

� (θ,φ+ 2π) . (14.2)

Eq. (14.2) requires m to be integer, and hence j must also be an integer.
In order to understand the physical meaning of the solutions with half-integer j, let us

investigate their properties in more detail.

14.2 Matrix representation

For j = 1
2 , we can compute the matrix elements: �

1
2 ,m

�|Ĵi|
1
2 ,m�; the possible values for m�

and m are: m� = 1
2 or −1

2 and m = 1
2 or −1

2 . If we choose the convention that the row and
column labels start with the largest value of the magnetic quantum number and decrease, so
that the first row (column) is labelled by m�(m) = 1

2 and the second row (column) is labelled
by m�(m) = −

1
2 , we find the following 2× 2 matrix:

�
2

�
1 0
0 −1

�
.

We say that this matrix represents the operator Ĵz in the j = 1
2 multiplet.

The only non-zero element for the matrix representing Ĵ+ is when m� = 1
2 and m = −

1
2 ,

for which

c+ =
�

1
2(

1
2 + 1) + 1

2(
1
2) = 1 ,

and hence the matrix is

Ĵ+ −→ �
�

0 1
0 0

�
,



14.2. MATRIX REPRESENTATION 125

whilst the only non-zero element for the matrix representing Ĵ− is when m� = −
1
2 and m = 1

2 ,
for which

c− =
�

1
2(

1
2 + 1) + 1

2(
1
2) = 1 ,

also, giving

Ĵ− −→ �
�

0 0
1 0

�
.

From these two matrices it is easy to construct the matrices representing Ĵx and Ĵy, since

Ĵx =
1

2
(Ĵ+ + Ĵ−) ,

Ĵy =
1

2i
(Ĵ+ − Ĵ−) .

Thus

Ĵx −→
�
2

�
0 1
1 0

�
, Ĵy −→

�
2

�
0 −i
i 0

�
.

You can readily verify that these 2× 2 matrices satisfy the angular momentum commutation
relations from which we started. We say, therefore, that they provide a matrix representation

of the angular momentum operators.

The set of three numerical 2×2 matrices which appear above in the matrix representations
of Ĵx, Ĵy and Ĵz are known as the Pauli spin matrices and are usually denoted as follows:

σx =

�
0 1
1 0

�
; σy =

�
0 −i
i 0

�
; σz =

�
1 0
0 −1

�

Collectively, we can write

Ĵ −→
1

2
�σ ,

meaning Ĵx −→
1
2�σx, etc. Often we will just write = instead of −→, but you should

remember that this is just one possible choice for representing the operators.

The Pauli matrices have the following property, which you can easily verify

σ2
x = σ2

y = σ2
z = 1 ,

where 1 denotes the unit 2× 2 matrix.
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14.3 Eigenvectors

It is trivial to show that the matrix σz has eigenvectors which are just two-component column
matrices: �

1 0
0 −1

��
1
0

�
=

�
1
0

�
,

�
1 0
0 −1

��
0
1

�
= −

�
0
1

�
,

so that the eigenvalue equations for Ĵz are

1

2
�
�

1 0
0 −1

��
1
0

�
=

1

2
�
�

1
0

�
,

1

2
�
�

1 0
0 −1

��
0
1

�
= −

1

2
�
�

0
1

�
,

and we see that Ĵz has eigenvalues ±1
2� as it should for a system with j = 1

2 .

Furthermore, if we construct the matrix representing Ĵ2, we see that it has these same
two column matrices as eigenvectors with a common eigenvalue j(j + 1)�2 ≡ 3

4�
2:

Ĵ2
≡ Ĵ2

x + Ĵ2
y + Ĵ2

z =
1

4
�2

��
0 1
1 0

�2

+

�
0 −i
i 0

�2

+

�
1 0
0 −1

�2
�
=

3

4
�2

�
1 0
0 1

�
,

and

3

4
�2

�
1 0
0 1

��
1
0

�
=

3

4
�2

�
1
0

�
,

3

4
�2

�
1 0
0 1

��
0
1

�
=

3

4
�2

�
0
1

�
.

We can thus identify the two column matrices with the two simultaneous eigenstates of the
operators Ĵ2 and Ĵz:

|j = 1
2 ,m = 1

2� −→

�
1
0

�
, |j = 1

2 ,m = −
1
2� −→

�
0
1

�
.

We can also see that an arbitrary state |ψ� with j = 1
2 may be represented as a linear

combination of these two states since they span the two-dimensional space of 2-component
column matrices:

|ψ� =

1
2�

m=−1
2

cm |j =
1

2
,m�

is represented by �
ψ1

ψ2

�
= c1

2

�
1
0

�
+ c

−1
2

�
0
1

�
.
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14.4 Scalar Products

The rule for scalar products is different when using a matrix representation; it doesn’t involve
any integration. The Dirac kets we have seen are represented by column matrices of rank
(2j+1); the corresponding conjugates, or Dirac bras, are represented by row matrices of the
same rank. The rule is that if

|ψ� −→

�
ψ1

ψ2

�
then �ψ| −→

�
ψ∗
1 ψ∗

2

�
.

The scalar product of two states |ψ� and |φ� is then defined to be

�φ|ψ� ≡
�
φ∗
1 φ∗

2

�� ψ1

ψ2

�
= φ∗

1ψ1 + φ∗
2ψ2 .

Thus, for example, for a normalised state

�ψ|ψ� = ψ∗
1ψ1 + ψ∗

2ψ2 = |ψ1|
2 + |ψ2|

2 = 1

The orthonormality property of the eigenvectors is also obvious:

�
1 0

�� 1
0

�
= 1,

�
0 1

�� 0
1

�
= 1,

�
1 0

�� 0
1

�
= 0,

�
0 1

�� 1
0

�
= 0 ,

and these may be used to project out the coefficients cm in the expansion of the arbitrary
state |ψ�.

14.5 Eigenvectors of Ĵx

So far we have concentrated on the eigenvalues and eigenstates of Ĵz, but what of the other
Cartesian components of angular momentum ? It is clear that, since there is nothing special
about the z direction, we should also expect that measuring say the x component of the
angular momentum for a system with j = 1

2 can only yield either ±
1
2�. Let us verify this.

The matrix representing Ĵx is 1
2�σx so we need to find the eigenvalues and eigenvectors of

the 2× 2 matrix σx. Let us write

σx χ = ρχ with χ =

�
χ1

χ2

�
,

where ρ denotes an eigenvalue and χ the corresponding eigenvector. We find the eigenvalues
by rewriting this as

(σx − ρ 1) χ = 0 ,



128 LECTURE 14. SPIN

where 1 denotes the unit 2 × 2 matrix. This is a pair of simultaneous equations for χ1 and
χ2, which only have a non-trivial solution if the determinant of the 2 × 2 coefficient matrix
on the left-hand side is singular. The condition for this is

det (σx − ρ 1) =

����
−ρ 1
1 −ρ

���� = 0 ,

which yields
ρ2 − 1 = 0 implying that ρ = ±1 .

The eigenvalues of Ĵx are thus ±1
2� as anticipated.

More generally, the eigenvalues of Ĵx are written mx�. In this case, where j = 1
2 , we have

mx = ±
1
2 .

Let us now find the eigenvectors corresponding to the two eigenvalues.

The case ρ = 1 The equation for the eigenvectors becomes:

�
0 1
1 0

��
χ1

χ2

�
=

�
χ1

χ2

�
⇒

�
χ2

χ1

�
=

�
χ1

χ2

�
⇒ χ2 = χ1 .

We can pick any 2-component column matrix which satisfies this condition. In particular, a
suitably normalised eigenvector which represents the state with j = 1

2 and mx = 1
2 is

|j = 1
2 ,mx = 1

2� −→
1
√
2

�
1
1

�
.

The case ρ = −1 In close analogy with the computation above, let us write:

�
0 1
1 0

��
χ1

χ2

�
= −

�
χ1

χ2

�
⇒

�
χ2

χ1

�
= −

�
χ1

χ2

�
⇒ χ2 = −χ1 .

Thus a suitably normalised eigenvector which represents the state with j = 1
2 and mx = −

1
2

is

|j = 1
2 ,mx = −

1
2� −→

1
√
2

�
1

−1

�
.

Comments Let us briefly comment on the solutions found above.

• The eigenvectors corresponding to mx = 1
2 and mx = −

1
2 are orthogonal, as they must

be:
1
√
2

�
1 1

� 1
√
2

�
1

−1

�
= 0 .
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• The eigenvectors of Ĵx are expressible as linear combinations of the eigenvectors of Ĵz:

1
√
2

�
1
1

�
=

1
√
2

�
1
0

�
+

1
√
2

�
0
1

�
,

and
1
√
2

�
1

−1

�
=

1
√
2

�
1
0

�
−

1
√
2

�
0
1

�
.

Thus if a system with j = 1
2 is in an eigenstate of Ĵx, for example with mx = 1

2 , then

the probability that a measurement of Ĵz yields the result m = 1
2 is | 1√

2
|2 = 1

2 .

What has emerged from this analysis is that we can consider systems with j = 1/2 as
having intrinsic angular momentum, which has nothing to do with the orbital motion of the
particle about some point. It is a property of the system in their own rest frame, and can
be seen as an internal degree of freedom of the particle. Hence the wave function describing
the state of the system must also depend on an index m labelling the values of the internal
degrees of freedom. For the case j = 1/2, m can take two values, and therefore the wave
functions have two components as discussed above. For the general case of spin j, the wave
functions have 2j + 1 components. This intrinsic angular momentum is known as spin and
doesn’t really have any classical analogue. Electrons, protons, neutrons and many of the
more unstable particles have spin 1

2 .
The theory that we have developed for j = 1

2 provides the framework for analysing the
quantum mechanics of spin 1

2 particles. Conventionally we write s = 1
2 rather than j = 1

2

when discussing such particles. The spin angular momentum operator is written Ŝ. Ŝz has
eigenvalues ms� with ms = ±

1
2 . Often these two states, with ms = ±

1
2 , are referred to as

‘spin up’ and ‘spin down’ respectively.
Of course, the wavefunction of a spin-12 particle also has a spatial dependence so the

complete specification of the state is of the form

ψ = ψ1(r)α+ ψ2(r)β =

�
ψ1(r)
ψ2(r)

�
,

where

α ≡

�
1
0

�
, β ≡

�
0
1

�
.

The probability interpretation is then a straightforward generalisation:

|ψi(r)|2 dτ is the probability of finding the particle in the volume dτ at r with z-
component of spin 1

2� if i = 1 or spin −
1
2� if i = 2.
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14.6 The Stern-Gerlach Experiment

We can now understand the result of the original Stern-Gerlach experiment, which was
conducted with a beam of silver atoms and found two emergent beams, corresponding to
j = 1

2 .

Let us now consider a more elaborate experiment involving not one but several Stern-
Gerlach magnets, which we use to make successive measurements of various components of
angular momentum.

Figure 14.1: A beam of atoms,each with j = 1
2 , travelling along the y-axis passes through a

sequence of Stern-Gerlach magnets whose mean fields are oriented along either the z-direction
(SGZ) or the x-direction (SGX). The shaded boxes represent absorbers.

We assume that we can neglect any interaction between the particles in the beam. The
two beams emerging from the first magnet have m = 1

2 and m = −
1
2 , respectively, but only

the former is allowed to proceed to the second magnet. Thus we know that each particle

entering the second magnet is in the state |j = 1
2 ,m = 1

2�, represented by the column matrix

�
1
0

�
.

The second magnet, which has its mean field aligned with the x-direction, serves to measure
the x-component of angular momentum. We can predict the outcome by expanding the state
|j = 1

2 ,m = 1
2� in eigenstates of Ĵx and finding the probability amplitudes for the two possible

outcomes, mx = 1
2 and mx = −

1
2 . Thus

�
1
0

�
= a

1
√
2

�
1
1

�
+ b

1
√
2

�
1

−1

�
.
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We find the amplitudes a and b by orthogonal projection in the usual way:

a =
1
√
2

�
1 1

�� 1
0

�
=

1
√
2
,

b =
1
√
2

�
1 −1

�� 1
0

�
=

1
√
2
.

We have then for the desired probabilities

probability of getting mx = 1
2 is |a|2 =

1

2

probability of getting mx = −
1
2 is |b|2 =

1

2
.

Since each particle is therefore equally likely to be found with mx = 1
2 or mx = −

1
2 , equal

numbers, on average, go into each of the two emergent beams and so the two beams will have
equal intensity .

Regeneration What happens if we select only those particles with mx = 1
2 emerging

from the second magnet and allow them to impinge on a third magnet whose mean field is
aligned with the z-direction? This is the situation illustrated in Fig. 14.1. We are, in effect,
remeasuring Ĵz by means of the third apparatus. We know that the state of particles entering
the third magnet is |j = 1

2 ,mx = 1
2� and we can expand this state in terms of the complete set

of eigenstates of Ĵz. The expansion coefficients will be the probability amplitudes required
to compute the probabilities of getting the two possible outcomes m = 1

2 and m = −
1
2 when

we measure Ĵz for each particle:

1
√
2

�
1
1

�
=

1
√
2

�
1
0

�
+

1
√
2

�
0
1

�
.

and we see that the desired amplitudes are both 1√
2
, so giving equal probabilites for the two

outcomes. The remarkable feature of this result is that the probability of getting m = −
1
2

is non-zero despite our having eliminated the beam with m = −
1
2 which emerged from the

first magnet! This phenomenon is referred to as regeneration. It has arisen here because the
second measurement, of the x-component of angular momentum, was incompatible with the

first measurement , of the z-component.

General Remarks More generally, if the second apparatus is aligned so that its mean field
lies not in the x-direction, but in the x−z plane at an angle θ to the z-axis, then it measures
the component of angular momentum not along the x-direction but along the direction of a
unit vector

n = sin θ ex + cos θ ez ,
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where ex and ez are the usual Cartesian unit vectors in the x- and z-directions respectively.
The relevant eigenstates are then those of the matrix

σ.n = σx sin θ + σz cos θ =

�
cos θ sin θ
sin θ − cos θ

�
.

14.7 Summary

As usual, we summarize the main concepts introduced in this lecture.

• Half-integer values of the angular momentum. Orbital angular momentum can only
have integer values of j.

• Matrix representation of the angular momentum for j = 1/2.

• Two-dimensional complex space of states with j = 1/2.

• Spin as an internal degree of freedom.

• Examples.


