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16.1 Introduction

There are many systems in nature that are made of several particles of the same species.
These particles all have the same mass, charge, and spin. For instance the electrons in an
atom are identical particles. Identical particles cannot be distinguished by measuring their
properties. This is also true for classical particles. In classical mechanics we can always follow
the trajectory of each individual particle, i.e. their time evolution in space. The trajectories
identify each particle in classical mechanics, making identical particles distinguishable.

In quantum mechanics the concept of trajectory does not exist and identical particles are
indistinguishable. Let us consider for simplicity a system of two identical particles. The state
of the system is described by a wave function:

ψ(ξ1, ξ2), ξ = {x,σ} , (16.1)

where x yields the position of the particle, and σ yields the z-component of the spin of the
particle, if the latter is different from zero.

The state with the two particles exchanged is described by the wave function:

ψ(ξ2, ξ1) . (16.2)

If the two particles are identical, the two functions represent the same quantum state, and
therefore:

ψ(ξ1, ξ2) = eiαψ(ξ2, ξ1) . (16.3)

Repeating the exchange of the two particles we find:

e2iα = 1 =⇒ eiα = ±1 . (16.4)

Hence the wave function of a system of two identical particles must be either symmetric or
antisymmetric under the exchange of the two particles.

The Spin-Statistics Theorem

Systems of identical particles with integer spin (s = 0, 1, 2, . . .), known as bosons , have
wave functions which are symmetric under interchange of any pair of particle labels. The
wave function is said to obey Bose-Einstein statistics.
Systems of identical particles with half-odd-integer spin (s = 1

2 ,
3
2 , . . .), known as fermions,

have wave functions which are antisymmetric under interchange of any pair of particle
labels. The wave function is said to obey Fermi-Dirac statistics.

This law was discovered by Wolfgang Pauli and is supported by experimental evidence.
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16.2 A first look at Helium

In the simplest model of the helium atom, the Hamiltonian is

Ĥ = Ĥ1 + Ĥ2 +
e2

4π�0|r1 − r2|

where

Ĥi =
p̂2
i

2µ
−

2e2

4π�0ri
Note that it is symmetric under permutation of the indices 1 & 2 which label the two electrons.
This must be the case if the two electrons are identical or indistinguishable: it cannot matter
which particle we label 1 and which we label 2.

This observation is quite general: the same argument holds for identical particles other
than electrons and can be extended to systems of more than two identical particles.

Let us write the symmetry condition concisely as:

Ĥ(1, 2) = Ĥ(2, 1)

Suppose that
Ĥ(1, 2)ψ(1, 2) = Eψ(1, 2)

then interchanging the labels 1 & 2 gives

Ĥ(2, 1)ψ(2, 1) = Eψ(2, 1)

but using the symmetry property of Ĥ means that

Ĥ(1, 2)ψ(2, 1) = Eψ(2, 1)

so we conclude that ψ(1, 2) and ψ(2, 1) are both eigenfunctions belonging to the same eigen-
value, E, as is any linear combination of ψ(1, 2) and ψ(2, 1). In particular, the normalised
symmetric and antisymmetric combinations

ψ± ≡
1
√
2
{ψ(1, 2)± ψ(2, 1)}

are eigenfunctions belonging to the eigenvalue, E.
If we introduce a particle interchange operator, P12, with the property that

P12ψ(1, 2) = ψ(2, 1)

then the symmetric and antisymmetric combinations are eigenfunctions of P12 with eigenval-
ues ±1 respectively:

P12ψ± = ±ψ±

Since ψ± are simultaneous eigenfunctions of Ĥ and P12 it follows that [Ĥ, P12] = 0, as you
can easily verify from the above equations, and that the symmetry of the wavefunction is a
constant of the motion.
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16.3 Two-electron wave function

In the previous lecture, we constructed the states of the coupled representation for two spin-12
electrons, the three triplet states:

χ1,1 = α1α2

χ1,0 =
1
√
2
{α1β2 + β1α2}

χ1,−1 = β1β2

and the singlet state:

χ0,0 =
1
√
2
{α1β2 − β1α2}

where we have used a simplified notation for the states of the coupled basis:

χs,ms ≡ |s,ms, s1, s2�.

Notice that the triplet states are symmetric under interchange of the labels 1 and 2, whereas
the singlet state is antisymmetric. If we are to satisfy the Spin-Statistics Theorem, this has
implications for the symmetry of the spatial wavefunctions that we combine with the spin
functions to give the full wavefunction of the 2-electron system. The 2-electron wavefunction
will have the general form

Ψ(1, 2) = ψ(r1, r2) · χ

The symmetry properties of the various factors are as follows:

symmetry of χs symmetry of ψ symmetry of Ψ
s = 0 (singlet) a s a
s = 1 (triplet) s a a

Thus the spatial wavefunction must be antisymmetric if the two electrons are in a spin

triplet state but symmetric if they are in a spin singlet state.

16.4 More on the He atom

Suppose for the moment that we neglect spin and also neglect the mutual Coulomb repulsion
between the two electrons. That is, we treat the two electrons as moving independently in
the Coulomb field of the nucleus. The Hamiltonian then reduces to

Ĥ = Ĥ1 + Ĥ2 where Ĥi =
p̂2
i

2µ
−

2e2

4π�0ri
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We already know what the eigenfunctions and eigenvalues for Ĥ1 and Ĥ2 are, namely

Ĥ1 un1�1m1(r1) = En1un1�1m1(r1)

Ĥ2 un2�2m2(r2) = En2un2�2m2(r2)

so it is easy to see that Ĥ has eigenfunctions which are just products of the 1-electron
eigenfunctions:

Ĥun1�1m1(r1)un2�2m2(r2) ≡ (Ĥ1 + Ĥ2)un1�1m1(r1)un2�2m2(r2)

= (En1 + En2)un1�1m1(r1)un2�2m2(r2) ≡ En un1�1m1(r1)un2�2m2(r2)

Thus the energy eigenvalues are given by

En = En1 + En2 where Eni = −
µ

2�2

�
Ze2

4πε0

�2
1

n2
i

The Ground State:

In this crude model the ground state energy is just

En=1 = En1=1 + En2=1 = 2En1=1.

Setting Z = 2 in the Bohr formula thus yields for the ground state energy:

E1 = 8× (−13.6 eV ) = −108.8 eV

to be compared with the experimentally measured value of −78.957 eV .
The ground state spatial wavefunction has n1 = n2 = 1 and �1 = �2 = m1 = m2 = 0 and

is thus
u100(r1)u100(r2).

Each electron is in a 1s state; we say that the electronic configuration is (1s)2.
If we now worry about spin, we remember that the total wavefunction is a product of

a spatial wavefunction and a spin wavefunction of the correct symmetry. But the spatial
wavefunction is symmetric and can thus only be combined with a spin singlet spin function

to give an overall antisymmetric 2-electron wavefunction;

Ψ(ground state) = u100(r1)u100(r2)χ0,0.

Notice that, since �1 = �2 = 0, the total orbital angular momentum quantum number of the
ground state configuration is � = �1 + �2 = 0. Thus the ground state has zero orbital and
spin angular momentum, and hence zero total angular momentum.
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The First Excited States:

The first excited states correspond to one electron being excited to a 2s or 2p state, with
the other remaining in a 1s state. The electronic configurations are denoted by (1s)(2s) and
(1s)(2p) respectively. The (degenerate) energy eigenvalue can again be obtained from the
Bohr formula with Z = 2:

En=2 = En1=1 + En2=2 = En1=2 + En2=1 = 5×−13.6 eV = −68.0 eV

In this case it is possible to construct spatial wavefunctions which are either symmetric or
antisymmetric. The overall antisymmetric combinations are then:

Ψsinglet(1, 2) =
1
√
2
{u100(r1)u2�m�

(r2) + u2�m�
(r1)u100(r2)}χ0,0

Ψtriplet(1, 2) =
1
√
2
{u100(r1)u2�m�

(r2)− u2�m�
(r1)u100(r2)}χ1,ms

16.5 Pauli exclusion principle

The results that we have just obtained for the independent particle approximation to the
helium atom illustrate a more general result, related to the Spin-Statistics Theorem and
known as the Pauli Exclusion Principle which states

No two identical fermions can be in the same quantum state

For example,

• in the ground state, we see that although both electrons have n = 1 and � = m� = 0 i.e.
both are in a 1s state, they are in a spin singlet state, which means that if one electron
is in the spin state α, the other must be in the state β: the two electrons cannot have
an identical set of quantum numbers; if both were in the spin state α, the 2-electron
spin state would be a triplet state, which is ruled out by the Spin-Statistics Theorem;

• in any excited state, both electrons can be in the spin state α, corresponding to the
triplet state, but then the spatial wavefunction is forced to be antisymmetric, so that
the quantum numbers n, �,m�, of the two electrons have to differ - otherwise the spatial
wavefunction would vanish identically!

No such restriction applies to identical bosons; any number of identical bosons can occupy
the same quantum state.

Note that the correlation between spin and statistics has been postulated in the nonrel-
ativistic context used inthis course. The spin-statistic theorem can actually be derived in a
relativistic formulation of quantum mechanics. It is a consequence of the principles of special
relativity, quantum mechanics, and the positivity of the energy.
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16.6 Summary

As usual, we summarize the main concepts introduced in this lecture.

• Indistinguishable particles in quantum mechanics.

• Symmetry of the wave function, example of the He atom.

• Two-electron wave function, combining spin and spatial wave functions.

• More on the He atom.

• Pauli exclusion principle.
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