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7.1 Introduction

In this lecture we generalize the concepts introduced so far to systems that evolve in more
than one spatial dimension. While the generalization of the concepts is straightforward, we
will encounter new features that were not present for one-dimensional systems. The three-
dimensional formulation will allow us to discuss more realistic examples.

7.2 Quantum states

We discuss here the case of three spatial dimensions; positions in space are specified by
e.g. threee Cartesian coordinates (x, y, z). All results can be reduced to the case of a two-
dimensional space by dropping the dependence on the third coordinate z.

As in the one-dimensional case, quantum states are described by a wave function - cfr
Eq. (1.5):

quantum state ∼ Ψ(r, t) , (7.1)

the wave function is now a function of the position vector: r. After choosing a reference
frame in space, the vector is uniquely idetified by its coordinates (x, y, z) in that reference
frame.

The modulo square of the wave function has the same probabilistic interpretation dis-
cussed in Lecture 1:

|Ψ(r, t)|2 dτ is the probability that a measurement of the position of the particle yields
a result in the infinitesimal volume element dτ at r with dτ = dx dy dz in Cartesian
coordinates or r2 sin θ dr dθ dφ in spherical polars.

Thus |Ψ(r, t)|2 is a probability per unit volume.
The normalisation condition becomes

�

all space
dτ |Ψ(r, t)|2 = 1 . (7.2)

The physical meaning of this equation should be clear: the probability of finding the system
somewhere in space must be equal to one.

Note that if the system under consideration is a two-dimensional system, then the position
vector is a two-dimensional Euclidean vector, and all the integrals are computed over two-
dimensional surfaces.

We can still use Dirac’s notation to denote a state vector:

Ψ(r, t) ←→ |Ψ(t)� . (7.3)
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The scalar product of two states now involves an integral over the whole volume:

�Φ(t�)|Ψ(t)� =

�
dτ Φ(r, t�)∗Ψ(r, t), . (7.4)

The normalization condition in Dirac’s notation is:

�Ψ|Ψ� = 1 . (7.5)

Note that, when using Dirac’s notation, the condition is written exactly in the same form in
any number of dimensions. However the meaning of the scalar product denoted by the bra
and ket notation is different as we vary the number of dimensions - the integral in the scalar
product extends over the whole spatial volume.

7.3 Observables

As far as observables are concerned, there is no conceptual difference between the one-
dimensional systems that we discussed in the first part of the lectures, and systems in
higher-dimensional spaces. Observables are in one-to-one correspondence with linear Her-
mitean operators acting on the wave functions.

Let us summarize the main features of the correspondence:

• The eigenvalues of the operator Ô yield the possible outcomes of a measurement of the
observable O.

• You can easily check that the orthogonality relations that we proved for the eigenfunc-
tion of a Hermitean operator in the one-dimensional case are still true.

• Likewise, the set of eigenfunctions of a Hermitean operator are a complete set and
therefore any wave function can be expanded using these eigenfunctions as basis.

A quantum state can be expanded:

|ψ� =
�

n

cn|ψn� .

The eigenstates |ψn� are the basis vectors, and the coefficients cn are the coordinates. As we
discussed earlier in this course, the vector space in quantum mechanics is a complex space,
and therefore the coefficients cn are complex.
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Example The eigenvalue equation for a Hermitean operator Ô in a three-dimensional sys-
tem is:

Ôψk(r) = Okψk(r) . (7.6)

Note that in this case the eigenfunctions depend on the vector r. This is the only peculiarity
of the three-dimensional case. The eigenvalues Ok are the possible values for O, the eigen-
functions ψk(r) describe quantum states where a measurement of O would yield Ok with
probability one.

The completeness of the eigenfunctions is expressed by the fact:

ψ(r) =
�

k

ckψk(r) , (7.7)

for any generic quantum state ψ(r). As before, |ck|2 yields the probability of getting the
value Ok upon measuring O in the state ψ. The coefficients ck are obtained from the scalar
products:

ck = �ψk|ψ� , (7.8)

where now the scalar product requires a three-dimensional integral, according to Eq. (7.4).
Using Dirac’s notation, the definition of the Hermitean conjugate is formally unchanged:

�φ|Ô†
|ψ� =

�
�ψ|Ô|φ�

�∗
. (7.9)

If you want to rewrite the relation above using wave functions and integrals, you get:
�

dτ φ(r)∗Ô†ψ(r) =

��
dτ ψ(r)∗Ôφ(r)

�∗
. (7.10)

Remember that now we need to integrate over three-dimensional space, dτ is the infinitesimal
integration volume.

Example It is interesting to consider the generalization of the momentum operator defined
in Eq. (2.30) for the one-dimensional system. The momentum is a three-dimensional vector P
which can be represented by its three components in a Cartesian reference frame (Px, Py, Pz).
Following our general prescription, to each component of the momentum we associate a
Hermitean operator:

P̂x = −i� ∂

∂x
, (7.11)

P̂y = −i� ∂

∂y
, (7.12)

P̂z = −i� ∂

∂z
. (7.13)
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Hence for instance:

P̂xψ(r) = −i� ∂ψ

∂x

����
r

. (7.14)

A concise notation for the momentum operator is :

P̂ = −i�∇ . (7.15)

We shall use the notation xi, with i = 1, 2, 3 to denote the three components x, y, z respec-
tively. Similarly ∂

∂xi
will be used to indicate ∂

∂x ,
∂
∂y ,

∂
∂z respectively. Using a simple property

of partial derivatives, we have:

P̂iP̂jψ(r) = −�2 ∂2

∂xi∂xj
ψ(r) = −�2 ∂2

∂xj∂xi
ψ(r) = P̂jP̂iψ(r) . (7.16)

Different components of the momentum commute with each other, i.e. they can all be
measured simultaneously.

Following the derivation that led to Eq. (2.41), you can readily prove the canonical com-
mutation relations in three dimensions:

�
X̂i, P̂j

�
= i�δij . (7.17)

Thus X̂ does not commute with P̂x, but does commute with P̂y and P̂z. These commutation
relations lead to Heisenberg uncertainty relations involving the components of the position
and the momentum of the particle:

∆Xi ·∆Pj ≥
�
2
δij . (7.18)

7.4 Dynamics

Similarly to the case of one-dimensional systems, the dynamics is determined by the Schrödinger
equation:

i� ∂

∂t
Ψ(r, t) = ĤΨ(r, t) . (7.19)

In three dimensions the hamiltonian for the system can be expressed as:

Ĥ = T̂ + V̂

= −
�2
2m

∇
2 + V (X̂) , (7.20)

where

∇
2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(7.21)
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is the Laplace operator. Thus the time evolution of a quantum state is found by solving the
differential equation:

i� ∂

∂t
Ψ(r, t) =

�
−

�2
2m

∇
2 + V (r)

�
Ψ(r, t) . (7.22)

As in the one-dimensional case, we are going to solve the time-dependent Schrödinger equa-
tion by expanding the solution in eigenstates of the Hamiltonian. The latter are obtained by
solving the eigenvalue problem for Ĥ, i.e. the time-independent Schroödinger equation:

ĤψE(r) = Eψ(r) . (7.23)

Example Let us discuss the solution of the time-independent Schrödinger equation for the
isotropic harmonic oscillator in 3 dimensions, for which the potential is

V (r) = 1
2mω2r2 = 1

2mω2
�
x2 + y2 + z2

�
(7.24)

The eigenvalue problem can be separated in Cartesian coordinates by writing:

un(r) = X(x) · Y (y) · Z(z) , (7.25)

yielding

�
−

�2
2m

1

X

d2X

dx2
+

1

2
mω2x2

�
+

�
−

�2
2m

1

Y

d2Y

dy2
+

1

2
mω2y2

�
+

�
−

�2
2m

1

Z

d2Z

dz2
+

1

2
mω2z2

�
= En .

(7.26)
Each term in braces must be equal to a constant, so we can write

Enx + Eny + Enz = En (7.27)

with, for example, �
−

�2
2m

d2X

dx2
+ 1

2mω2x2X

�
= EnxX , (7.28)

which is just a 1-dimensional oscillator problem for which we know the solution:

Enx =
�
nx +

1
2

�
�ω , nx = 0, 1, 2, 3 . . . (7.29)

X(x) = unx(x) = Cnx exp(−α2x2/2)Hnx(αx) . (7.30)

Thus

En =
�
nx + ny + nz +

3
2

�
�ω, nx, ny, nz = 0, 1, 2, 3 . . . (7.31)

≡
�
n+ 3

2

�
�ω, n = 0, 1, 2, 3 . . . (7.32)
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7.5 Degeneracy

We see in the previous example a new feature, that we had not encountered in the one-
dimensional case. The three-dimensional harmonic oscillator displays degeneracy, i.e. more
than one eigenfunction correspond to the same eigenvalue.

Eq. (7.31) shows that a given value of En can arise in more than one way. For example:

n nx ny nz gn
0 0 0 0 1

1 0 0
1 0 1 0 3

0 0 1

gn is the number of ways that a given value of n, and hence of the energy En, can arise, and is
called the degree of degeneracy . We say, for example, that the n = 1 level is 3-fold degenerate,
meaning that there are three distinct quantum states of the same energy, corresponding to
the eigenfunctions

u1(x) · u0(y) · u0(z), u0(x) · u1(y) · u0(z), u0(x) · u0(y) · u1(z) . (7.33)

7.6 Summary

As usual, we summarize the main concepts introduced in this lecture.

• Description of three-dimensional quantum states.

• Implementation of the observables as Hermitean operators.

• Momentum operator and commutation relations.

• Schrödinger equation, stationary states and separation of variables.

• Degeneracy.


