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8.1 Introduction

Now that we have introduced three-dimensional systems, we need to introduce into our
quantum-mechanical framework the concept of angular momentum.

Recall that in classical mechanics angular momentum is defined as the vector product of
position and momentum:

L ≡ r × p =

������

i j k
x y z
px py pz

������
. (8.1)

Note that the angular momentum is itself a vector. The three Cartesian components of the
angular momentum are:

Lx = y pz − z py, Ly = z px − x pz, Lz = x py − y px . (8.2)

8.2 Angular momentum operator

For a quantum system the angular momentum is an observable, we can measure the angular
momentum of a particle in a given quantum state. According to the postulates that we
have spelled out in previous lectures, we need to associate to each observable a Hermitean
operator. We have already defined the operators X̂ and P̂ associated respectively to the
position and the momentum of a particle. Therefore we can define the operator

L̂ ≡ X̂ × P̂ , (8.3)

where P̂ = −i�∇. Note that in order to define the angular momentum, we have used the
definitions for the position and momentum operators and the expression for the angular
momentum in classical mechanics. Eq. (8.3) yields explicit expressions for the components
of the angular momentum as differential operators:

L̂x = −i�
�
y
∂

∂z
− z

∂

∂y

�
, L̂y = −i�

�
z
∂

∂x
− x

∂

∂z

�
, L̂z = −i�

�
x
∂

∂y
− y

∂

∂x

�
.

(8.4)
Eq. (8.4) can be economically rewritten as:

L̂i = −i� εijk xj
∂

∂xk
, (8.5)

where we have to sum over the repeated indices.

Mathematical aside
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In Eq. (8.5) we have used the same convention introduced in Lecture 7; we use:

x1 = x, x2 = y, x3 = z , (8.6)

to denote the three components of the position vector. The same convention is also used for
the partial derivatives:

∂

∂x1
=

∂

∂x
,

∂

∂x2
=

∂

∂y
,

∂

∂x3
=

∂

∂z
. (8.7)

In general the components of a vector V can labeled as:

V1 = Vx, V2 = Vy, V3 = Vz . (8.8)

The symbol εijk denotes the totally antisymmetric unit tensor:

ε123 = ε231 = ε312 = 1, cyclic indices (8.9)

ε213 = ε132 = ε321 = −1, anticyclic indices (8.10)

Out of twenty-seven components, only the six above are actually different from zero. Check
that you understand Eq. (8.5).

The following relations are useful:

εiklεimn = δkmδln − δknδlm , (8.11)

εiklεikm = 2δlm , (8.12)

εiklεikl = 6 . (8.13)

Using the canonical commutation relations, Eq. (7.17), we can easily prove that:

[L̂x, L̂y] = i�L̂z, [L̂y, L̂z] = i�L̂x, [L̂z, L̂x] = i�L̂y . (8.14)

The proof of this statement is left as an exercise in problem sheet 4. Once again, it is useful
to get familiar with the more compact notation:

�
L̂i, L̂j

�
= i� εijkL̂k . (8.15)

Example Instead of using the canonical commutation relations, we can derive the com-
mutation relations bewteen the components Li using their representation as differential op-
erators.
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whilst
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Noting the usual properties of partial derivatives

∂2

∂x∂z
=

∂2

∂z∂x
, etc (8.16)

we obtain on subtraction the desired result:
�
L̂x, L̂y

�
= �2

�
x
∂

∂y
− y

∂

∂x

�
= i�L̂z . (8.17)

Note that the Cartesian components of the angular momentum do not commute with
each other. Following our previous discussion on compatible observables, this means that
the components are not compatible observables. We cannot measure, for instance, Lx

and Ly simultaneously, and we do not have a basis of common eigenfunctions of the two
operators. Physically, this also implies that measuring one component of the angular
momentum modifies the probability of finding a given result for the other two.

Angular momentum plays a central role in discussing central potentials, i.e. potentials
that only depend on the radial coordinate r. It will also prove useful to have expression
for the operators L̂x, L̂y and L̂z in spherical polar coordinates. Using the expression for the
Cartesian coordinates as functions of the spherical ones, and the chain rule for the derivative,
yields

L̂x = i�
�
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

�

L̂y = i�
�
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

�

L̂z = −i� ∂

∂φ
.



8.3. SQUARE OF THE ANGULAR MOMENTUM 79

8.3 Square of the angular momentum

Let us now introduce an operator that represents the square of the magnitude of the angular
momentum:

L̂2
≡ L̂2

x + L̂2
y + L̂2

z =
3�

i=1

L̂2
i , (8.18)

or, in spherical polar coordinates

L̂2
≡ −�2

�
1

sin θ

∂

∂θ

�
sin θ

∂

∂θ

�
+

1

sin2 θ

∂2

∂φ2

�
. (8.19)

The importance of this observable is that it is compatible with any of the Cartesian compo-

nents of the angular momentum;

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0 . (8.20)

Sample proof. Consider for instance the commutator [L̂2, L̂z]:

[L̂2, L̂z] = [L̂2
x + L̂2

y + L̂2
z, L̂z] from the definition of L̂2

= [L̂2
x, L̂z] + [L̂2

y, L̂z] + [L̂2
z, L̂z]

= [L̂2
x, L̂z] + [L̂2

y, L̂z] since L̂z commutes with itself

= L̂xL̂xL̂z − L̂zL̂xL̂x + L̂yL̂yL̂z − L̂zL̂yL̂y .

We can use the commutation relation [L̂z, L̂x] = i�L̂y to rewrite the first term on the RHS
as

L̂xL̂xL̂z = L̂xL̂zL̂x − i�L̂xL̂y ,

and the second term as
L̂zL̂xL̂x = L̂xL̂zL̂x + i�L̂yL̂x .

In a similar way, we can use [L̂y, L̂z] = i�L̂x to rewrite the third term as

L̂yL̂yL̂z = L̂yL̂zL̂y + i�L̂yL̂x ,

and the fourth term
L̂zL̂yL̂y = L̂yL̂zL̂y − i�L̂xL̂y ,

thus, on substituting in we find that

[L̂2, L̂z] = −i�L̂xL̂y − i�L̂yL̂x + i�L̂yL̂x + i�L̂xL̂y = 0 .

QED
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8.4 Eigenfunctions

The compatibility theorem tells us that L̂2 and L̂z thus have simultaneous eigenfunctions .
These turn out to be the spherical harmonics , Y m

� (θ,φ). In particular, the eigenvalue equa-

tion for L̂2 is
L̂2 Y m

� (θ,φ) = �(�+ 1)�2 Y m
� (θ,φ) , (8.21)

where � = 0, 1, 2, 3, . . . and

Y m
� (θ,φ) = (−1)m

�
2�+ 1

4π

(�−m)!

(�+m)!

�1/2
Pm
� (cos θ) exp (imφ) , (8.22)

with Pm
� (cos θ) known as the associated Legendre polynomials. Some examples of spherical

harmonics will be given below.
The eigenvalue �(�+1)�2 is degenerate; there exist (2�+1) eigenfunctions corresponding

to a given � and they are distinguished by the label m which can take any of the (2� + 1)
values

m = �, �− 1, . . . , −� , (8.23)

In fact it is easy to show that m labels the eigenvalues of L̂z. Since

Y m
� (θ,φ) ∼ exp (imφ) , (8.24)

we obtain directly that

L̂z Y
m
� (θ,φ) ≡ −i� ∂

∂φ
Y m
� (θ,φ) = m�Y m

� (θ,φ), (8.25)

confirming that the spherical harmonics are also eigenfunctions of L̂z with eigenvalues m�.

Mathematical aside
A few examples of spherical harmonics are

Y 0
0 (θ,φ) =

1
√
4π

Y 0
1 (θ,φ) =

�
3

4π
cos θ

Y 1
1 (θ,φ) = −

�
3

8π
sin θ exp (iφ)

Y −1
1 (θ,φ) =

�
3

8π
sin θ exp (−iφ) .



8.5. PHYSICAL INTERPRETATION 81

8.5 Physical interpretation

We have arrived at the important conclusion that angular momentum is quantised . The
square of the magnitude of the angular momentum can only assume one of the discrete set
of values

�(�+ 1)�2, � = 0, 1, 2, . . .

and the z-component of the angular momentum can only assume one of the discrete set of
values

m�, m = �, �− 1, . . . , −�

for a given value of �.
� and m are called the angular momentum quantum number and the magnetic quantum

number respectively.
Finally a piece of jargon: we refer to a particle in a state with angular momentum quantum

number � as having angular momentum �, rather than saying, more clumsily but accurately,
that it has angular momentum of magnitude

�
�(�+ 1) �.
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