
Quantum Mechanics

Problem Sheet 1 - Quantum states

Basics

1. This problem is meant to give you an idea of the typical energies involved in a quantum
process. Compare to the typical energies of a macroscopic classical process.

2. Compute the integral that yields the norm of the state, choose the normalization
constant in order to get a unit norm.

3. A useful relation.

4. Action of the position operator on the wave function in one dimension.

5. Useful relations involving Hermitian conjugates. If you can memorize some of these
relations, you will find it much easier to solve problems in subsequent problem sheets.

6. Eigenfunctions of operators and results of measurements.

7. A first look at two-state systems. Use of the hermiticity condition, find the eigenstates.

Further problems

1. Application of the two-state formalism to describe a qubit in quantum computation.
Application of some of the concepts introduce above to this basic example.

2. The Jacobi identity for quantum operators.

3. This problem requires you to compute some integrals that characterize the system
described by the given wave function. Try to perform the integrals, and then to
understand their physical meaning. This second step is where you understand the
physics!

4. Some mathematical relations about the eigenstates of compatible observables.



Basics

1. The energy levels for the infinite 1-dimensional square well are given by

En =
~2π2n2

8ma2
for n = 1, 2, 3, . . .∞ (1)

Calculate the energies of the first (n = 1) and second (n = 2) levels for the case of
an electron of mass 9.1× 10−31 kg, confined to a box of atomic dimensions (a = 10−10

m). Hence calculate the wavelength of a photon emitted in a transition between these
levels.

2. The first and the third energy eigenstates of the harmonic oscillator are respectively:

ψ0(x) = C0 exp
[
−α2x2/2

]
, (2)

ψ2(x) = C2

(
4α2x2 − 2

)
exp

[
−α2x2/2

]
, (3)

where α2 = mω/~.
Calculate explicitly the normalization constants for these two energy eigenstates, and
verify that the eigenfunctions are orthogonal. Note that:∫ ∞

−∞
exp{−α2x2}dx = (π/α2)

1
2 and

∫ ∞

−∞
x2 exp{−α2x2}dx =

1

2

√
π/α3 (4)

3. Show that:
1

Â
− 1

B̂
=

1

Â

(
B̂ − Â

) 1

B̂
. (5)

Remember that Â and B̂ are operators.

4. When acting on the wave function, the position operator, X̂, corresponds simply to
multiplication by x:

X̂ψ(x) = xψ(x) .

Use the definition of Hermitean conjugate given in lectures to show that X̂ is Hermitean
and hence that the potential energy operator V̂ ≡ V (x) is also Hermitean.

5. Prove the following relations:

(f̂ †)† = f̂ , (6)

(f̂ ĝ)† = ĝ†f̂ † , (7)[
f̂ , ĝĥ

]
= ĝ

[
f̂ , ĥ

]
+
[
f̂ , ĝ
]
ĥ , (8)[

f̂ ĝ, ĥ
]

= f̂
[
ĝ, ĥ
]

+
[
f̂ , ĥ

]
ĝ . (9)

If f̂ , ĝ are Hermitean, show that f̂ ĝ + ĝf̂ , and i
[
f̂ , ĝ
]

are also Hermitean.

Show that for any operator Â,
〈A†A〉 ≥ 0 , (10)

for any state.



6. The observables A and B are represented by operators Â and B̂ with eigenfunctions
{ui(x)} and {vi(x)} respectively, such that

v1(x) = {
√

3u1(x) + u2(x)}/2
v2(x) = {u1(x)−

√
3u2(x)}/2

vn(x) = un(x), n ≥ 3.

Verify that these relations are consistent with orthonormality of both bases. A certain
system is subjected to three successive measurements:

(i) a measurement of A
(ii) a measurement of B
(iii) another measurement of A

Show that if measurement (i) yields any of the values A3, A4, . . . then (iii) gives the
same result but that if (i) yields the value A1 there is a probability of 5

8
that (iii) will

yield A1 and a probability of 3
8

that it will yield A2. What may be said about the
compatibility of A and B ?

7. Consider a two-state system. We denote the two orthonormal states by |1〉, and |2〉.
In the general case, the Hamiltonian of the system can be written as a 2 × 2 matrix,
where the elements of the matrix are given by:

Hij = 〈i|Ĥ|j〉 .

Let us consider the Hamiltonian:

Ĥ =

(
E0 −η
−η E0

)
, E0 real . (11)

(a) Write the action of Ĥ on the states |1〉 and |2〉.
(b) Show that η has to be real.

(c) Compute the eigenvalues of Ĥ, and the normalized eigenvectors.



Further problems

1. A two-state quantum system describes a qubit in quantum computing. Consider a
qubit described by the Hamiltonian:

Ĥ = E0

(
1 0
0 −1

)
, (12)

and two observables described by the operators:

Â =

(
0 −i
i 0

)
, B̂ =

(
2 −

√
2i√

2i 1

)
. (13)

(a) Find the eigenvalues and eigenvectors for Â, and B̂.

(b) Are Â and B̂ compatible? Do they commute with the Hamiltonian?

(c) Suppose that an observation of Â has resulted in A = 1, what would be the results
for B̂, and what would be the respective probabilities?

(d) What would be the probability of finding A = 1 if a second measurement is made
immediately after the first one?

(e) What is the probability of finding A = 1 if a measurement of A is made immedi-
ately after a measurement of B that yielded the larger eigenvalue of B?

2. Let us consider three operators f̂ , ĝ, and ĥ. Show that:[
f̂ ,
[
ĝ, ĥ
]]

+
[
ĝ,
[
ĥ, f̂

]]
+
[
ĥ,
[
f̂ , ĝ
]]

= 0 . (14)

This result is known as the Jacobi identity.

3. Given the wavefunction

ψ(x) =
( π
α2

)−1/4
exp

(
−α2x2

2

)
, (15)

calculate 〈xn〉 and ∆x ≡
√
〈x2〉 − 〈x〉2.

Now calculate the momentum space wave function associated with ψ(x):

ψ̃(p) =

∫
dx√
2π~

eipx/~ψ(x) . (16)

Using ψ̃(p), calculate 〈pn〉 and ∆p ≡
√
〈p2〉 − 〈p〉2.

With the above results, what do you find for ∆x∆p?

4. Let us consider two Hermitean operators f̂ , ĝ, such that:[
f̂ , ĝ
]

= 0 , (17)

and let us denote ψn the eigenfunctions of ĝ:

ĝψn = gnψn . (18)



(a) Show that f̂ψn is an eigenstate of ĝ with eigenvalue gn.

In general there will be a finite number of eigenstates corresponding to the same eigen-
value gn. We denote these orthonormal eigenstates by {ψi

n, i = 1, 2, . . . , s}.

(b) Using the result in (a), deduce that:

f̂ψi
n =

s∑
j=1

Fijψ
j
n , (19)

where Fij are complex numbers.

(c) Show that Fij = F ∗ji, i.e. that F is an s× s Hermitean matrix.

Any finite-dimensional Hermitean matrix can be diagonalized by a unitary transfor-
mation U :

U †FU =


f1 0 . . . 0
0 f2 . . . 0
...

...
. . .

...
0 0 . . . fn

 . (20)

We can choose the following set of orthonormal linear combinations of ψi
n, for a given

n: φi
n =

∑
j U
†
ijψ

j
n.

(d) Show that f̂φi
n = fiφ

i
n .

We have therefore found a basis of simultaneous eigenstates of f̂ and ĝ:

f̂φi
n = fiφ

i
n , (21)

ĝφi
n = gnφ

i
n . (22)

By repeating the same argument for all eigenvalues gn, we can explicitly construct a
basis of simultaneous eigenvalues of f̂ and ĝ. The two observables are called compatible.
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