Quantum Mechanics

Problem Sheet 6

Basics

1. polar coordinates in two dimensions.
2. more on the harmonic oscillator.
3. a few details on the Stern-Gerlach experiment.
4. more on S-G.
5. useful problem to get some practice with the eigenstates of the H atom.
6. more practice with the H atom.

Further problems

1. H atom as a harmonic oscillator.
2. Lenz vector - you already saw this in dynamics! Compare with the classical case.

Basics

1. Consider a two-dimensional system. The position of the particle can be described equivalently by the Cartesian coordinates (x, y), or the polar ones (r, θ).
Sketch a two-dimensional plane, and identify the Cartesian and polar coordinates of a point P.
Find the relation between the Cartesian and the polar coordinates.
The gradient operator in two-dimensional polar coordinates is:

$$
\begin{equation*}
\underline{\nabla}=\hat{r} \frac{\partial}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}, \tag{1}
\end{equation*}
$$

use this expression to compute the Laplacian in polar coordinates.
In two dimensions we can define the angular momentum $\hat{L}=\hat{X} \hat{P}_{y}-\hat{Y} \hat{P}_{x}$. Note that the angular momentum has only one component in this case!! Compute \hat{L} in polar coordinates.
Show that:

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{\hat{L}^{2}}{\hbar^{2} r^{2}} \tag{2}
\end{equation*}
$$

2. Write down the time-independent Schrödinger equation for the two-dimensional harmonic oscillator of frequency ω. Find the eigenvalues, eigenfunctions, and their degeneracy by separating the Cartesian coordinates x, y.
Use the result in $\mathbf{B} 1$ to write the equation for the radial wave function of a stationary state of the two-dimensional harmonic oscillator.
(Hint: there are several steps to be performed to get to the radial equation. Don't give up!)
3. In an experiment of the Stern-Gerlach type, a beam of atoms, each with $\ell=1$ and kinetic energy $3 \times 10^{-20} \mathrm{~J}$, travels for 0.03 m through a magnetic field whose gradient $\partial B / \partial z=2.3 \times 10^{3} \mathrm{Tm}^{-1}$. Given that the magnitude of the deflecting force on each atom is

$$
F_{z}=\mu_{z} \frac{\partial B}{\partial z} \quad \text { and that } \quad \mu_{z}=\mu_{B} L_{z} / \hbar
$$

where μ_{B}, the so-called Bohr magneton, is $9.27 \times 10^{-24} J T^{-1}$, calculate the transverse deflections produced at a screen 0.25 m from the exit from the magnet.
4. Can the Stern-Gerlach experiment be done with free electrons? What effect does the proton have in a hydrogen Stern-Gerlach experiment? Give quantitative answers.
5. Consider a hydrogen atom whose wavefunction at time $t=0$ is the following superposition of energy eigenfunctions;

$$
\Psi(\underline{r}, t) \equiv \psi(\underline{r})=\frac{1}{\sqrt{78}}\left[2 u_{100}(\underline{r})-7 u_{200}(\underline{r})+5 u_{322}(\underline{r})\right]
$$

- Is this wavefunction an eigenfunction of the parity operator?
- What is the probability of obtaining the result (i) E_{1} (ii) E_{2} (iii) E_{3}, on measuring the total energy?
- What are the expectation values of the energy, of the square of the angular momentum and of the z component of the angular momentum ?

6. The normalised energy eigenfunction of the ground state of the hydrogen atom $(Z=1)$ is

$$
u_{100}(\underline{r})=C \exp \left(-r / a_{0}\right)
$$

where a_{0} is the Bohr radius and C is a normalisation constant. For this state

- calculate the normalisation constant, C; you may wish to note the useful integral

$$
\int_{0}^{\infty} \exp (-b r) r^{n} \mathrm{~d} r=n!/ b^{n+1}, \quad n>-1
$$

- determine the radial distribution function, $D_{10}(r)$, and sketch its behaviour; hence determine the most probable value of the radial coordinate, r, and the probability that the electron is within a sphere of radius a_{0}; recall that $Y_{0}^{0}(\theta, \phi)=1 / \sqrt{4 \pi}$;
- calculate the expectation value of r;
- calculate the expectation value of the potential energy, $V(r)$;
- calculate the uncertainty, Δr, in r.

Further problems

1. In the TISE for the H atom, set:

$$
\begin{align*}
r & =\lambda z^{2} / 2, \tag{3}\\
\frac{\chi(r)}{r} & =\frac{F(z)}{z} ; \tag{4}
\end{align*}
$$

Show that $F(z)$ obeys the radial equation of the two-dimensional harmonic oscillator discussed in B2.
Deduce the wave function for the ground state of the H atom.
(This solution of the H atom is due to Schwinger).
2. In three dimensions, consider the Lenz vector:

$$
\begin{equation*}
\underline{\hat{Q}}=\frac{1}{2 m}(\underline{\hat{P}} \times \underline{\hat{L}}-\underline{\hat{L}} \times \underline{\hat{P}})-\frac{e^{2}}{r} \underline{\hat{X}}, \tag{5}
\end{equation*}
$$

where X and P are the three-dimensional position and momentum, L is the angular momentum operator, and m the mass of a particle. Show that Q commutes with the Hamiltonian for the H atom.
Show that

$$
\begin{equation*}
\hat{Q}^{2}=e^{4}+\frac{2 \hat{H}\left(\hat{L}^{2}+\hbar^{2}\right)}{m} . \tag{6}
\end{equation*}
$$

