Quantum Mechanics

Problem Sheet 8

1. The Hamiltonian that describes the interaction of a static spin- $\frac{1}{2}$ particle with an external magnetic field, <u>B</u>, is

$$\hat{H} = -\hat{\mu}.\underline{B}$$

where the magnetic moment operator, $\underline{\hat{\mu}}$, is related to the spin operator, $\underline{\hat{s}}$, by $\underline{\hat{\mu}} = \gamma \underline{\hat{s}}$, with γ the gyromagnetic ratio. Use the Pauli representation of the spin vector $\underline{\hat{s}}$ to find the energy eigenvalues in a static uniform magnetic field in the z-direction, $\underline{B}_0 = (0, 0, B_0)$.

2. Construct the matrix $\underline{\sigma} \cdot \underline{e}$, where \underline{e} is a unit vector with Cartesian components e_x, e_y, e_z . $\underline{\sigma}$ has Cartesian components which are the Pauli matrices, σ_x , σ_y , σ_z , so that

$$\underline{\sigma} \cdot \underline{e} = e_x \sigma_x + e_y \sigma_y + e_z \sigma_z.$$

Show that the eigenvalues of $\underline{\sigma} \cdot \underline{e}$ are ± 1 and hence deduce that a measurement of the component of spin along the direction of \underline{e} , of a spin- $\frac{1}{2}$ particle can only yield the result $\frac{1}{2}\hbar$ or $-\frac{1}{2}\hbar$. Obtain the *normalized* eigenvectors of $\underline{\sigma}.\underline{e}$ corresponding to each of the eigenvalues and verify the your answers by considering the special case $e_x = 1$, $e_y = e_z = 0$ considered in lectures. Remember that the normalisation condition for a 2-component column matrix with entries ψ_1 and ψ_2 is

$$|\psi_1|^2 + |\psi_2|^2 = 1.$$

- 3. A beam of spin- $\frac{1}{2}$ particles is sent through a Stern-Gerlach apparatus which divides the incident beam into two spatially-separated beams having $m = \pm \frac{1}{2}$ respectively. The beam with $m = -\frac{1}{2}$ is removed, whilst the beam with $m = \frac{1}{2}$ is allowed to impinge on a second Stern-Gerlach apparatus whose mean field is also perpendicular to the beam direction, but inclined at an angle θ with respect to that of the first apparatus. Calculate the relative intensities of the two emergent beams.
- 4. Show that the matrices

$$M_1 = \hbar \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix} \quad M_2 = \hbar \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \quad M_3 = \hbar \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

satisfy the angular momentum algebra. Find the eigenvalues of M_3 and of $M^2 \equiv M_1^2 + M_2^2 + M_3^2$ and hence show that the matrices may be used to represent the components of angular momentum for a system with j = 1.

5. Two indistinguishable, non-interacting, spin- $\frac{1}{2}$ particles move in the potential

$$V(x) = \infty, \quad |x| > L/2, \quad V(x) = 0 \quad |x| \le L/2$$

Obtain expressions for the energy eigenvalues and eigenfunctions of the ground state and first excited state of the two-particle system. What is the degeneracy of the first excited state?

How would your answers change if the particles in question were spinless?

- 6. What are the allowed values of the total angular momentum quantum number, j, for a particle with spin $s = \frac{1}{2}$ and orbital angular momentum $\ell = 2$? If two spinless particles each have orbital angular momentum $\ell = 1$, what are the allowed values of the total orbital angular momentum ?
- 7. Given a system of two non-interacting particles with orbital angular momentum $\ell = 1$, $|m_1, m_2\rangle$ denotes a state where particles 1 and 2 have L_z components $m_1\hbar$ and $m_2\hbar$ respectively.

Construct the operators \hat{L}^2 and \hat{L}_z for the system in terms of the operators $\hat{L}_{z1,2}$ and $\hat{L}_{\pm 1,2}$.

Normalize the following wave functions. Are these states eigenstates of \hat{L}^2 and \hat{L}_z ? If yes, calculate the eigenvalues:

$$\begin{array}{ll} |1,1\rangle, & |-1,-1\rangle, & |1,0\rangle + |1,1\rangle, & |1,0\rangle + |0,1\rangle, & |1,0\rangle - |0,1\rangle, \\ |1,-1\rangle + 2|0,0\rangle + |-1,1\rangle, & |1,-1\rangle - |-1,1\rangle. \end{array}$$

8. For given values of j_1 and j_2 , the number of states in the uncoupled basis $|j_1m_1, j_2m_2\rangle$ is $(2j_1 + 1)(2j_2 + 1)$. The number of states in the coupled basis $|JM, j_1, j_2\rangle$ should be the same, since the two bases are linearly related. A partial proof of the Angular Momentum Addition Theorem consists in showing that this is the case provided that the allowed values of j run from $|j_1 - j_2|$ in integer steps to $j_1 + j_2$. You are invited to prove, therefore, that

$$\sum_{j=|j_1-j_2|}^{j_1+j_2} (2j+1) = (2j_1+1)(2j_2+1).$$

9. Verify that the states

$$\begin{split} |s = 1, m_s = 1\rangle &= |\uparrow\uparrow\rangle \\ |s = 1, m_s = 0\rangle &= \frac{1}{\sqrt{2}}\{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\} \\ |s = 1, m_s = -1\rangle &= |\downarrow\downarrow\rangle \\ |s = 0, m_s = 0\rangle &= \frac{1}{\sqrt{2}}\{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\} \end{split}$$

of the coupled basis are indeed eigenstates of the operator \hat{S}^2 with eigenvalues $s(s+1)\hbar^2$ by using the identity

$$\hat{S}^2 \equiv \hat{S}_1^2 + \hat{S}_2^2 + 2\hat{S}_{1z}\hat{S}_{2z} + \hat{S}_{1+}\hat{S}_{2-} + \hat{S}_{1-}\hat{S}_{2+}$$

- 10. Prove that the parity operator, defined by $\mathcal{P}\psi(x) = \psi(-x)$, is a Hermitean operator. Also prove that the eigenfunctions of \mathcal{P} , corresponding to the eigenvalues +1 and -1, are orthogonal.
- 11. Construct the four-dimensional representation of the components of the intrinsic angular momentum $\hat{S}_x, \hat{S}_y, \hat{S}_z$ acting in the space of states with spin s = 3/2. Write explicitly the matrix corresponding to the operator \hat{S}^2 ; verify that you obtain the expected result.