
Chapter 4

Rotations
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4.1 Geometrical rotations

Before discussing rotation operators acting the state space E , we want to review some basic properties
of geometrical rotations.

4.1.1 Rotations in two dimensions

In two dimensions rotations are uniquely defined by the angle of rotation. They preserve the length
of a vector and the angle between vectors.

The image of a vector under a rotation by π/3 is represented in Fig. 4.1. Clearly the net result of
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Figure 4.1: Rotation of vectors by π/3. You can see from the picture that the length of the vectors,
and the angle between them are left unchanged.

two successive rotations is a rotation, the rotation by θ = 0 is the identity, and any rotation can be
undone by rotating in the opposite direction. The set of all two-dimensional rotations forms a group,
called U(1). The elements of the group are labelled by the angle of the rotation θ ∈ [0, π). There
is an infinite number of elements, denoted by a continuous parameter; groups where the elements
are labelled by continuous parameters are called continuous groups. We will denote two–dimensional
rotations by R(θ). Note that the parameter labelling the rotations varies in a compact interval
(the interval [0, 2π) in this case). Groups with parameters varying over compact intervals are called
compact groups.

The action of rotations on real vectors in two dimensions defines a representation of the group.



CHAPTER 4. ROTATIONS 3

Given a basis {e1, e2}, a vector r is represented by two coordinates:

r = x1e1 + x2e2 . (4.1)

The action of a rotation R(θ) can be represented as 2 × 2 matrix:

(

x
y

)

7→

(

x′

y′

)

=

(

cos θ − sin θ
sin θ cos θ

) (

x
y

)

(4.2)

Exercise 4.1.1 Check the formula above, then repeat it until you are sure you know it by heart!!

Intuitively two successive rotations by θ and ψ yield a rotation by θ + ψ, and hence the group of
two–dimensional rotations is Abelian.

Exercise 4.1.2 Using the two–dimensional representation of U(1) defined above, check that:

R(θ)R(θ′) = R(θ + θ′) . (4.3)

It is interesting to consider a one–dimensional complex representation of U(1). Given the coordi-
nates (x1, x2) of a point in a two–dimensional space, we can define the complex number z = x1 + ix2.
The transformation properties of z define a representation:

z 7→ z′ = eiθz . (4.4)

To each rotation R(θ) we can associate a single complex number D(θ) = eiθ.

Exercise 4.1.3 Check that the following mappings define genuine representations of U(1):

R(θ) 7→ D(n)(θ) = einθ, ∀n ∈ Z . (4.5)

What do we have for n = 0? What happens if n 6∈ Z?

4.1.2 Rotations in three dimensions

Rotations in three dimensions are characterized by an axis (given by its unit vector u, and the angle
of rotation θ (0 ≤ θ < 2π). Hence a three–dimensional rotation is identified by three real parameters,
and denotes by Ru(θ). The three real parameters can be chosen to be the components of a single
vector:

θ = θu (4.6)
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whose length is given by the angle θ, and whose direction defines the axis of the rotation.
As for the two–dimensional case, the set of three–dimensional rotations constitutes a group, called

SO(3). However SO(3) is not Abelian:

Ru(θ)Ru′(θ′) 6= Ru′(θ′)Ru(θ) . (4.7)

Rotation around a given axis define subgroups of SO(3). Each of these subgroups is isomorphic
to U(1).

Infinitesimal rotation Since rotations are identified by a continuous rotation angle, we can con-
sider rotations by infinitesimally small angles.

The action of an infinitesimal rotation on a vector is given by:

Ru(dθ)v = v + dθu × v . (4.8)

Exercise 4.1.4 Draw a plot to illustrate Eq. (4.8).

Every finite rotation can be decomposed as a product of infinitesimal ones:

Ru(θ + dθ) = Ru(θ)Ru(dθ) = Ru(dθ)Ru(θ) . (4.9)

Exercise 4.1.5 Show that:

Ry(−dθ′)Rx(dθ)Ry(dθ′)Rx(−dθ) = Rz(dθdθ
′) . (4.10)

Before you perform the explicit calculation, can you explain why the result has to be proportional
to dθdθ′?

4.2 Rotations in state space: angular momentum

Let us consider a single particle in three-dimensional space. At any given time the state of the
particle is described by a vector in a Hilbert space |ψ〉 ∈ E . The associated wave function is obtained
by projecting the state vector on the basis of eigenfunctions of the position operator:

ψ(r) = 〈r|ψ〉 . (4.11)

We can now rotate the system by a rotation R, such that:

r 7→ r′ = Rr ; (4.12)
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the state of the system after the rotation is described by a different vector |ψ′〉 ∈ E , and its associated
wave function ψ′(r) = 〈r|ψ′〉. It is natural to assume that the value of the initial wave function at the
point r will be rotated to the point r′:

ψ′(r′) = ψ(r) ⇐⇒ ψ′(r′) = ψ(R−1r′) . (4.13)

Since the latter relation holds for all r′, it can be rewritten as:

ψ′(r) = ψ(R−1r) . (4.14)

We can define the operator R associated with the geometrical rotation R as the operator that asso-
ciates the state |ψ′〉 to the state |ψ〉:

R : E → E

|ψ〉 7→ |ψ′〉 = R|ψ〉 . (4.15)

Eq. (4.14) can now be rewritten as:

〈r|R|ψ〉 = 〈R−1r|ψ〉 . (4.16)

The operator R is called a rotation operator.

Exercise 4.2.1 Prove that:

1. R is a linear operator;

2. R is unitary (Hint: Consider the action of R on bras 〈r| and kets |r〉);

3. the set of operators R defines a representation of the group of geometrical rotations.

For a small rotation angle dθ, e.g. around the z axis, the rotation operator can be expanded at
first order in dθ:

Rz(dθ) = 1 − idθLz +O(dθ2) ; (4.17)

the operator Lz is called the generator of rotations around the z axis. A finite rotation can then be
written as:

Rz(θ) = exp (−iθLz) . (4.18)

The generators of rotations around the other axes Lx, Ly are defined in an analogous way.

Rotation operators in terms of angular momentum Let us assume the vector r is described
by its coordinates (x, y, z) in a given basis, and let us consider the transformation of the wave function
under a rotation by dθ around the z axis. According to the discussion in the previous Sections, we
can write:

R−1
z (dθ)





x
y
z



 =





x+ ydθ
y − xdθ

z



 , (4.19)



CHAPTER 4. ROTATIONS 6

and therefore:
ψ′(x, y, z) = ψ(x+ ydθ, y − xdθ, z). (4.20)

Expanding at first order in dθ yields:

ψ′(x, y, z) = ψ(x, y, z) − idθ

[

x
∂

i∂y
− y

∂

i∂x

]

ψ(x, y, z) . (4.21)

Inside the square bracket you recognize the expression for the z component of the angular momentum
in the R representation, XPy −Y Px. We have shown a very important result: the angular momentum
operator in quantum mechanics is the generator of rotations in the space of physical states. The an-
gular momentum of a state describes the transformation properties of a given system under rotations.
We will see several illustrations of this idea in the rest of the course.

From Eq. (4.21) we can easily derive:

ψ′(x, y, z) = 〈r|ψ′〉 = 〈r| [1 − idθLz] |ψ〉 ; (4.22)

since {|r〉} is a complete basis in E , we deduce:

|ψ′〉 = Rz(dθ) = [1 − idθLz] |ψ〉 . (4.23)

The equation above is valid for arbitrary |ψ〉, and therefore we can write an identity between operators:

Rz(dθ) = 1 − idθLz . (4.24)

The image in the state space of the relation you proved in Eq. (4.10) can be written as:

[1 + idθ′Ly] [1 − idθLx] [1 − idθ′Ly] [1 + idθLx] = 1 − idθdθ′Lz ; (4.25)

expanding the left–hand side, and comparing the coefficients of the dθdθ′ term we get the commutation
relation of the components of angular momentum:

[Lx, Ly] = iLz . (4.26)

Note that the commutation relations of angular momentum operators are a consequence of the non–
Abelian structure of the group of geometrical rotations.

The full set of commutation relations between generators can be computed by a similar method.
They can be summarized as:

[Li, Lj ] = iεijkLk . (4.27)

Exercise 4.2.2 Using the commutation relations above, show that

[

L2, Li

]

= 0 , (4.28)

where L2 = L2
x + L2

y + L2
z.



CHAPTER 4. ROTATIONS 7

The corresponding finite rotation operator is obtained as usual by exponentiating the generator:

Rz(θ) = exp [−iθLz] ; (4.29)

it can be generalized for a generic rotation around an axis u:

Ru(θ) = exp [−iθu · L] . (4.30)

Since the operators Lx, Ly, Lz do not commute:

Ru(θ) 6= exp [−iθuxLx] exp [−iθuyLy] exp [−iθuzLz] . (4.31)

Exercise 4.2.3 Knowing that the angular momentum is an observable, prove that the rotation
operator R is unitary.

Finally let us consider again rotations around the z axis, and let us choose a basis in E composed
of eigenvectors of Lz, {|m, τ〉}. The variable τ indicates all the other indices that are needed to specify
the vectors of the basis. Expanding a generic ket |ψ〉,

|ψ〉 =
∑

m,τ

cm,τ |m, τ〉 , (4.32)

where:
Lz|m, τ〉 = m|m, τ〉 . (4.33)

Acting with a rotation operator on |ψ〉:

Rz(θ)|ψ〉 =
∑

m,τ

cm,τRz(θ)|m, τ〉

=
∑

m,τ

cm,τe
−imθ|m, τ〉 . (4.34)

You have seen in Quantum Mechanics lectures that the eigenvalues of the orbital angular momentum
component Lz are integers, and therefore:

Rz(2π) = 1 . (4.35)

The integers eigenvalues of Lz guarantee that the rotation operator corresponding to a rotation by 2π
is the identity operator. This has to be the case if we are considering a single particle with no internal
degrees of freedom: if the state of the particle is uniquely determined by its position in space, then
upon a rotation by 2π the particle has to come back to its initial state. As we shall see later, this is
no longer true if there are further degrees of freedom.
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4.3 Commutation relations for a generic non-Abelian group.

The derivation we have just seen for the commutator of the generators of rotations can be generalized
to any non-Abelian group.

Let us consider a generic continuous group G, whose elements are labelled by an n real parameters
α = (α1, . . . , αn). We choose the parameters α in such a way that g(0) = e.

Let D be a representation of the group. To each element g(α) ∈ G we associate a linear operator
D(α) acting on some vector space E . For an infinitesimal transformation D(dα) we can expand
linearly in dα:

D(dα) = 1 +
∑

k

αk
∂D

∂αk

∣

∣

∣

∣

0

+O(dα2
k) . (4.36)

The generators Tk are defined by identifying the expression above with:

D(dα) = 1− i
∑

k

dαkTk +O(dα2
k) , (4.37)

i.e.

Tk = −i
∂D

∂αk

∣

∣

∣

∣

0

. (4.38)

For a finite transformation we have:

D(α) = lim
N→∞

D(α/N)N = lim
N→∞

[

1 − i
αkTk

N

]N

= exp[−iαkTk] . (4.39)

Exercise 4.3.1 The factor of i in the definition of the generators is a convention. It is particularly
useful for physical purposes since unitary transformationsD have Hermitean generators Tk. Prove
this statement.

Consider now the group commutator:

D(α)D(β)D(α)−1D(β)−1 , (4.40)

this is the product of four elements of the group, and therefore it is a member of the group. Hence
there must be a vector of n real parameters γ such that:

D(α)D(β)D(α)−1D(β)−1 = D(γ) . (4.41)

Clearly γ is a function of α, and β.
If the group is Abelian the matrices commute, and the group commutator reduces to the identity,

i.e. γ(α, β) = 0, while for a non-Abelian group we have:

γ(α, β) 6= 0 . (4.42)

If we consider infinitesimal transformations, and expand D(α), D(β), and D(γ) at first order in their
arguments, we find:

D(γ) = 1− iγkTk = 1 + βlαm [Tl, Tm] . (4.43)

Let us concentrate now on γ(α, β). The following properties can be easily proven:
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1. γ(0, 0) = 0;

2. if α = 0, or β = 0, then γ = 0.

Therefore we conclude that γ must be a quadratic function of its arguments:

γt(α, β) = −crstαrβs , (4.44)

where crst are real constants, and r, s, t(= 1, . . . , n) are the indices labelling the parameters of the
transformation.

Using Eq. (4.44), we obtain:
D(γ) = 1− icrstαrβsTt , (4.45)

i.e.
[Tr, Ts] = icrstTt . (4.46)

The set of all real linear combinations of Tk is a vector space G:

G =

{

∑

k

ckTk, ck ∈ R

}

. (4.47)

The commutator [, ] defines a binary operation G × G → G, such that:

[X + Y, Z] = [X,Z] + [Y, Z] (4.48)

[X,Y + Z] = [X,Y ] + [X,Z] (4.49)

[αX, βY ] = αβ[X,Y ] . (4.50)

(4.51)

The vector space G, equipped with the product law [, ] is called the Lie algebra of the group G. The
coefficients crst which define the commutators of the generators are called structure constants.

Note that the structure constants were obtained starting from the parametrization γ(α, β) which
are defined in a specific representations. It can be shown that they are actually independent of the
representation.

Exercise 4.3.2 Write down explicitly the 3× 3 matrix which represents a rotation by the angle
θ around the z-axis in three dimensions. Expand its elements for infinitesimal θ and deduce the
generator of rotations around z for this three-dimensional representation.

Exercise 4.3.3 Consider the set of 2 × 2 complex unitary matrices U , with detU = 1. This set
is a group under matrix multiplication called SU(2). Use the fact that detU = 1 to prove that
the generators are traceless. Since the matrices are unitary, the generators are also Hermitean.
Check that the matrices σi/2, where σi are the Pauli matrices, are a basis for the Lie algebra of
SU(2). Compute explicitly the commutation relations of the SU(2) generators σi/2, and check
that they satisfy the same algebra as the SO(3) generators.
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4.4 State space of two particles

Let us now consider a system composed of two spinless particles, which we denote by (1) and (2)
respectively, and let us choose a basis

{

|φ1
i 〉

}

in the state space of particle (1), and a basis
{

|φ2
i 〉

}

in
the space state of particle (2).

The state space of the composed system is given by the tensor product

E = E1 ⊗ E2 , (4.52)

i.e. the vector space which is made of the linear combinations of the vectors:

|φij〉 = |φ1
i 〉|φ

2
j 〉 . (4.53)

Operators that refer to the particle (1) only act on the |φ1
i 〉, and similarly for the operators that refer

to particle (2), e.g. for a rotation operator:

R1(θ)|φij〉 =
∑

k

R1(θ)k
i |φ

1
k〉|φ

2
j 〉 , (4.54)

and similarly

R2(θ)|φij〉 =
∑

l

R2(θ)l
j |φ

1
i 〉|φ

2
l 〉 . (4.55)

The generators of rotations are denoted L1, and L2 respectively.
Expanding a generic state of the two–particle system into the basis above

|ψ〉 =
∑

ij

cij |φ
1
i 〉|φ

2
j 〉 , (4.56)

it can be readily checked that it transforms according to the tensor product of the two representations
R1 and R2:

|ψ〉 7→ |ψ′〉 =
[

R1 ⊗R2
]

|ψ〉 . (4.57)

Exercise 4.4.1 Check Eq. (4.57) by using the expansion of |ψ〉, and the rules above for the
transformation properties of the basis vectors |φij〉.

The rotation operator can be written as:

R1
u(θ) ⊗R2

u(θ) = exp [−iθL1 · u] exp [−iθL2 · u] . (4.58)

Since L1 and L2 commute, the rotation operator can be conveniently rewritten as:

R1
u(θ) ⊗R2

u(θ) = exp [−iθ(L1 + L2) · u] , (4.59)

where the sum of the individual angular momenta L = L1 + L2 defines the total angular momentum
of the composite system.

Intuitively you can argue that L1 and L2 commute because they relate to different particles within
the composite system. This qualitative statement can be made more concrete using the formulae in
Eqs. (4.54), and (4.55).

We shall see later the close relation between the Clebsch–Gordan series of a tensor product repre-
sentation and the rules for the addition of angular momentum.
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4.5 Rotation of an arbitrary system

So far we have discussed the relation between angular momentum and rotations starting from Eq. (4.14),
which involved the wave function, i.e. the projection of the state vector onto eigenstates of position.
However there is no need to refer to position eigenstates, and we can instead reason directly in terms
of vectors in E . We want to associate an operator R acting in E to each geometrical rotation R. The
operator R describes how the state vector changes under rotations. The product law of the group of
geometrical rotations is preserved by the operators R (i.e. the mapping R 7→ R is a homomorphism),
but only locally: the product of two geometrical rotations, at least one of which being infinitesimal, is
represented by the product of the corresponding operators R. However, the operator associated with
geometrical rotations by 2π does not necessarily need to be mapped into the identity operator acting
on E .

The operator Rz corresponding to an infinitesimal geometrical rotation around the z-axis is:

Rz(dθ) = 1 − idθJz + . . . . (4.60)

The equation above defines the generator of rotations along the z-axis, denoted Jz to distinguish
the generic case from the orbital angular momentum discussed in previous Sections. The other
components Jx, Jy are defined in a similar way. Using the same reasoning as above, we can show
that the commutation relation for the Ji operators is the same as the one for the Li that we already
obtained.

The angular momentum of any quantum mechanical system is related to the corresponding rotation
operators; the commutation relations amongst its components follow directly from this relation.

A finite rotation by θ around an axis u is written:

Ru(θ) = exp (−iθu · J) . (4.61)

4.6 Rotation of operators

Given the transformation properties of physical states, we can easily derive the transformation prop-
erties of the operators that act on them. Let us consider a state |ψ〉 and its image under a rotation
|ψ′〉 = R|ψ〉. When acting on |ψ〉 with some operator O we obtain a state |φ〉 = O|ψ〉. Under the
rotation R:

|φ〉 7→ R|φ〉 = RO|ψ〉

= (ROR†)(R|ψ〉)

≡ O′|ψ′〉 ; (4.62)

i.e. the rotated operator is given by O′ = ROR†.

Scalar operators A scalar operator is an operator which is invariant under rotations:

O′ = O ; (4.63)

if we consider infinitesimal rotations and use Eq. (4.60), the condition above translates into:

[O,J] = 0 . (4.64)

Several scalars appear in physical problems; e.g. the angular momentum squared J2 is a scalar.
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Exercise 4.6.1 For a spinless particle (J = L), prove that R2,P2,R · P are invariant.

Vector operators A vector operator V is a set of three operators Vx, Vy, Vz which transform like
the components of a geometric vector under rotations:





Vx

Vy

Vz



 7→





V ′
x

V ′
y

V ′
z



 = R





Vx

Vy

Vz



R† = R





Vx

Vy

Vz



 , (4.65)

where R is the 3 × 3 matrix describing the geometric rotation.

Exercise 4.6.2 Deduce the commutation relations of Vx with the three generators Jx, Jy, Jz.

Exercise 4.6.3 Consider a spinless particle and check explicitly that R, and P are vector oper-
ators.
(Hint: the generator of rotations is given by L = R × P, use the commutation relation between
R and P to compute their commutation relations of L.)

Conservation of angular momentum A system is invariant under rotations if its Hamiltonian
is invariant under all the elements of the group. For this to be true it is necessary and sufficient that
the H commutes with all the generators of the rotation operators:

[H,J] = 0 ; (4.66)

this property can be rephrased by saying that the Hamiltonian is a scalar operator. It implies that
the angular momentum is conserved.

The operatorsH,J2, Jz commute with each other and therefore can be diagonalized simultaneously.
We can choose a basis for the vector space of physical states made of eigenvalues of these three
operators, {k, j, l}.

The degeneracy of the states and selection rules for the transition between these states are deter-
mined by their transformation properties under rotations, in complete analogy with the results we
have established for finite groups in the previous Chapter.
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4.7 Representations of SU(2)

We have seen in Sec. 4.3 that the SU(2) and SO(3) have the same algebra. The commutation relations
for the generators are:

[Ji, Jj ] = iεijkJk . (4.67)

Let us define J2 =
∑

i J
2
i , it can be readily checked that [J2, Ji] = 0, ∀i = 1, 2, 3. An operator that

commutes with all generators of a Lie group is called a Casimir operator. When acting on the elements
of a vector space that defines an irrep of the group, we obtain from Schur’s lemma:

J2 = λ1 , (4.68)

and the eigenvalues of the Casimir operator can be used to classify the irreps.
Note that the Ji do not commute between themselves, and therefore cannot be simultaneously

diagonalized. On the other hand a common basis can be found which diagonalizes both the commuting
operators {J2, J3}. We shall denote |j,m〉 the elements of such a basis, j,m are two labels that identify
the eigenvector; we shall see below that j is related to the eigenvalue of J2, and m to the eigenvalue of
J3. The values that j, and m, can take are constrained by the structure of the group. The eigenvectors
are normalized such that:

〈j′,m′|j,m〉 = δjj′δmm′ . (4.69)

J1, J2 are used to build raising and lowering operators:

J± = J1 ± iJ2, (J±)† = J∓ . (4.70)

The commutation relations in Eq. (4.67) imply:

[J3, J+] = J+, [J3, J−] = −J− (4.71)

[J+, J−] = 2J3 . (4.72)

Exercise 4.7.1 Prove that the Casimir operator J2 can be rewritten as:

J2 = J2
3 − J3 + J+J− = J2

3 + J3 + J−J+ . (4.73)

Let us now build the irreducible representations of SU(2). We identify m with the eigenvalue of
J3:

J3|j,m〉 = m|j,m〉 . (4.74)

Exercise 4.7.2 Prove that J± are raising and lowering operators of m; i.e.

J3J+|j,m〉 = (m+ 1)J+|j,m〉 , (4.75)

J3J−|j,m〉 = (m− 1)J−|j,m〉 , (4.76)
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Note that the value of j is left unchanged by J±, therefore the raising and lowering operators
create new vectors that belong to the same irreducible representation identified by j.

Thus, by acting with J+ we can build a tower of states with increasing values of m. If we want
the representation to be finite–dimensional, we need this sequence to stop, i.e. we need a vector |ψ〉
such that J+|ψ〉 = 0. For a given value of j, we denote this vector |j, j〉:

J3|j, j〉 = j|j, j〉, J+|j, j〉 = 0 . (4.77)

Clearly j is the highest value of the J3 eigenvalue in the representation labelled by j. It is related to
the eigenvalue of J2 by Eq. (4.73):

J2|j, j〉 = j(j + 1)|j, j〉 , (4.78)

i.e. |j, j〉 is an eigenstate of J2 with eigenvalue j(j + 1). Since [J2, J±] = 0 we deduce that:

J2|j,m〉 = j(j + 1)|j,m〉, ∀m. (4.79)

Now we can start from the vector |j, j〉 and apply the lowering operator J−. Clearly we generate
states with decreasing values of m = j, j − 1, j − 2, . . .. Once again if we want a finite–dimensional
representation, this sequence must also stop, i.e. there exists a value l such that J−|j, l〉 = 0. From
this condition we can redily obtain:

〈j, l|J+J−|j, l〉 = 0

=⇒ j(j + 1) − l(l− 1) = 0

=⇒ j = −l . (4.80)

Hence the possible values for m in the representation labelled by j are m = −j,−j+1, . . . , j−1, j. As
a consequence, we obtain j = n/2, n ∈ N, i.e. the irreducible representations of SU(2) are labelled
by semi–integer numbers.

Exercise 4.7.3 When acting with raising and lowering operators on |j,m〉 we obtain an eigen-
state of J3 with eigenvalue m± 1. However the vector is not normalized to one. Hence:

J±|j,m〉 = N±(j,m)|j,m± 1〉 . (4.81)

Prove that the normalization is:

N±(j,m) = [(j ∓m)(j ±m+ 1)]
1/2

. (4.82)

We have built a set of orthonormal vectors {|j,m〉,m = −j,−j+1, . . . , j−1, j}. When acting with
Ji on one of these vectors, a linear combination of |j,m′〉 vectors is obtained. The set of vectors is
therefore the basis of a vector space which is left invariant by the rotation operators. This is precisely
the definition of an irreducible representation. The representation is (2j + 1)–dimensional.

(

J
(j)
3

)

mm′

= 〈j,m|J3|j,m
′〉 = mδmm′ , (4.83)

(

J
(j)
±

)

mm′

= 〈j,m|J±|j,m
′〉 = N±(j,m)δm,m′±1 . (4.84)

The equations above fully specify the representations of the algebra.
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Representation of the group elements Group elements are obtained by exponentiating the
generators, i.e.

D(j)(θ)mm′ = 〈j,m|e−iθ·J|j,m′〉 . (4.85)

Let us focus on rotations around the z-axis. Since J3 is diagonal, the matrix corresponding to a finite
rotation by an angle φ around the z-axis is easily computed:

d(j)(φ)mm′ = eimφδmm′ , (4.86)

and in particular:
d(j)(2π) = (−)2m = (−)2j (4.87)

If the particle does not have any internal degree of freedom, i.e. its state is completely specified by
one complex wave function ψ(x), then:

d(l)(2π)ψ(x) = ψ(R−1x) = ψ(x) , (4.88)

and therefore necessarily d(l)(2π) = 1, and j ∈ N. The representations of SO(3) are labelled by integer
values j.

If the particle has internal degrees of freedom, its wave function depends on the position x and the
value of the internal degrees of freedom, that we shall represent as a further variable a: ψ = ψ(x, a).
The corresponding state vector in E is denoted |ψa〉. If the system is rotated in space the internal
degrees can mix:

|ψa〉 7→ Uab(θ)R(θ)|ψb > , (4.89)

where U acts on the internal degrees of freedom, and R is the rotation operator we discussed for the
spinless case. The wave function transforms as:

〈x|ψa〉 7→ 〈x|UabR|ψb〉 = 〈R−1x|Uab|ψb〉 , (4.90)

i.e. the state vector is transformed by the action of (i) the usual rotation operator R = exp [−iθ · L],
where L is the orbital angular momentum, and (ii) a further operator U which acts on the internal
degrees of freedom (we shall call these internal degrees of freedom spin).

Exercise 4.7.4 Make sure you understand this paragraph!!

Combining the orbital part and the spin part of the rotation operator for infinitesimal rotations
yields:

[URψ(x)]a = (δab − iθ · Lδab − iθ · Sab)ψb(x) (4.91)

= (1− iθ · J)ab ψb(x) , (4.92)

where J = L + S, [L,S] = 0.
We can compute the character corresponding to a rotation by θ in the j irreducible representation.

Remember that rotations by the same angle around different axes are conjugate elements in SO(3) and
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therefore have the same character. The computation is more easily performed for rotations around
the z axis:

χ(j)(θ) =

j
∑

m=−j

(

d(j)(θ)
)

mm

=

j
∑

m=−j

eimθ

= e−ijθ

2j
∑

m=0

(

eiθ
)m

=
sin(j + 1/2)θ

sin θ/2
, (4.93)

which proves a result we had anticipated in Eq. (3.73).
For l = 1 we recover the three–dimensional vector represenation (i.e. the representation under

which geometrical vectors transform). The character is given by χ(1)(θ) = 1 + 2 cos θ, as you can
easily check from the explicit expression for the matrices R(θ).

4.8 Product representation

The set of vectors {|j,m〉|j′,m′〉 = |jj′,mm′〉} is a basis of a (2j + 1) × (2j′ + 1)–dimensional vector
space Ejj′ . The action of the rotation operators in Ejj′ defines a (2j + 1) × (2j′ + 1)–dimensional
product representation of SU(2). In a generic case such a representation is reducible, and characters
are going to be useful to obtain a Clebsch–Gordan series for the product representation.

Using Eq. (4.93), we can prove the following identity:

χ(j)(φ)χ(j′)(φ) = χ(j+j′)(φ) + χ(j−1/2)(φ)χ(j′−1/2)(φ) , (4.94)

where φ indicates the rotation angle.
The last term in the RHS above is of the same form as the LHS, with the indices decreased by

1/2; i.e. Eq. (4.94) is a recursion relation for the product on the LHS. We can iterate the identity
until one of the indices j, j′ becomes = 0.

Without loss of generality, we can assume that j > j′, then:

χ(j)χ(j′) = χ(j+j′) + χ(j+j′−1) + . . .+ χ(j−j′) ; (4.95)

i.e. we have the Clebsch–Gordan series:

D(j) ⊗D(j′) =

j+j′
⊕

J=|j−j′|

D(J) . (4.96)

The state |jj′,mm′〉 can be decomposed into vectors that transform according to the irreducible
representations of SU(2), which we label by J :

|jj′,mm′〉 =

j+j′
∑

J=|j−j′|

J
∑

M=−J

|J,M〉〈J,M |jj′,mm′〉 . (4.97)
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Let us define the total angular momentum J = J(1) + J(2), where J(1),J(2) are the generators of
rotations in the subspaces labelled respectively by j and j′. Then the states |J,M〉 are eigenvectors
of J2 and J3 with eigenvalues J(J + 1) and M respectively.

Eq. (4.97) describes the rule for the addition of angular momenta. The coefficients of these
expansion are the Clebsch–Gordan coefficients:

C(jj′J ;mm′M) = 〈J,M |jj′,mm′〉

= 0, unless m+m′ = M, |j − j′| ≤ J ≤ j + j′ . (4.98)

Finally we can use the fact that the |J,M〉 are a complete set of orthnormal vectors to prove two
orthogonality relations for the Clebsch–Gordan coefficients.

The first one uses the completeness:

〈j1j2,m1m2|j
′
1j

′
2,m

′
1m

′
2〉 = δj1j′

1
δj2j′

2
δm1m′

1
δm2m′

2

=
∑

JM

〈j1j2,m1m2|J,M〉〈J,M |j′1j
′
2,m

′
1m

′
2〉

=
∑

JM

C(j1j2J ;m1m2M)∗C(j′1j
′
2J ;m′

1m
′
2M) . (4.99)

While the second one uses the orthnormality:

δJJ ′δMM ′ = 〈J,M |J,M〉

=
∑

jj′,mm′

C(jj′J ;mm′M)C(jj′J ′;mm′M ′)/, . (4.100)

Eq. (4.100) can be used to invert the relation between |J,M〉 and |jj′,mm′〉:

|J,M〉 =
∑

jj′,mm′

C(jj′J ;mm′M)∗|jj′;mm′〉 . (4.101)

Exercise 4.8.1 Consider the case j1 = j2 = 1/2. The states of each particle are vectors in
two–dimensional vector spaces E1, E2. A basis for E1 is given by the states with J3 = ±1/2,
i.e. the states with spin up and down respectively, which we denote by | ↑〉1 = |1/2, 1/2〉, and
| ↓〉1 = |1/2,−1/2〉 respectively. A basis for E2 can be constructed in a completely analogous way.
The tensor space describing the states of the two particle system is the four–dimensional vector
space spanned by the vectors:

| ↑〉1| ↑〉2 = |1/2, 1/2; 1/2, 1/2〉 | ↑〉1| ↓〉2 = |1/2, 1/2; 1/2,−1/2〉

| ↓〉1| ↑〉2 = |1/2, 1/2;−1/2, 1/2〉 | ↓〉1| ↓〉2 = |1/2, 1/2;−1/2,−1/2〉 .

From the discussion above the total angular momentum of the system of two particles of spin
1/2 can take the values J = 0, 1. Write the four states |J = 0, J3 = 0〉, |J = 1, J3 = 1〉,
|J = 1, J3 = 0〉, and |J = 1, J3 = −1〉 as linear combinations of the four states listed above.
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4.9 Wigner–Eckart theorem

Tensor operators We can now generalize the concept of tensor operator. A set of operators

{T
(j)
m ,m = −j, . . . , j} are called tensor operators if they transform according an irreducible represen-

tation of SU(2) under rotations:

T (j)
m 7→ RT (j)

m R−1 = T
(j)
m′ D

(j)
m′m(θ) . (4.102)

Exercise 4.9.1 By considering an infinitesimal rotation, prove that Eq. (4.102) is equivalent to:

[

Ji, T
(j)
m

]

= T
(j)
m′

(

J
(j)
i

)

m′m
, (4.103)

where J
(j)
i is the matrix representing the generator Ji in the irreducible representation j.

We can use the transformation properties of operators and states do derive the selection rules that
are induced by rotational symmetry.

Let T
(J)
M be a tensor operator. The state T

(J)
M |j,m〉 transforms according to D(J) ⊗D(j); such a

state can be written as a linear combinations of the basis vectors |Jj,Mm〉, i.e.

T
(J)
M |j,m〉 = t|Jj,Mm〉 , (4.104)

where t is a linear operator, invariant under rotations.

Theorem 4.9.1 The Wigner–Eckart theorem states that:

〈j′,m′|T
(J)
M |j,m〉 = C(Jjj′;Mmm′)〈j′||T (J)||j〉 ; (4.105)

i.e. the matrix element is proportional to the Clebsch–Gordan coefficient. The proportionality factor
〈j′||T (J)||j〉 only depends on J, j, and j′, and is called a reduced matrix element.
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4.10 Problems

4.10.1 More on generators

Under translations T̂ (a) the position operator x̂ transforms as T̂ (a)x̂T̂−1(a) = x̂ + a. By writing

T̂ = eiaP̂ , where P̂ is the generator of translations, deduce directly the canonical commutation
relation

[x̂, P̂ ] = i.

4.10.2 Eigenfunctions of L
z

Show that the eigenfunctions ψ(m)(r, θ, φ) of L̂z transform according to the irreducible representa-
tions of SO(2). Use the orthogonality of the eigenfunctions to deduce appropriate orthogonality and
completeness relations for the irreducible representations.

4.10.3 Rotations of vectors

The 3-dimensional real vector r′ obtained by rotating the vector r through an angle θ about an axis
in the direction of the unit vector n is given by

r′ = n(n · r) + cos θ[r − n(n · r)] + sin θ(n × r).

1. Draw a plot to illustrate the above formula.

2. Use this to show that a general element of SO(3) may be parameterised as

Rij = cos θ δij + (1 − cos θ)ninj − sin θ

3
∑

k=1

εijknk

What is the corresponding character?

3. Use this result to show that the infinitesimal generators of SO(3) in the defining representation
are

(Tk)ij = iεijk.

4.10.4 Euclidean group

The Euclidean group in the plane, E2, relates a point (x, y) to a point (x′, y′) in the plane by the
transformation

x′ = x cos θ − y sin θ + a

y′ = x sin θ + y cos θ + b

where θ is an angle of rotation in the plane about the origin, and a, b are the components of a
translation in the plane.

1. Show that the transformation may be represented as a 3 × 3 matrix which carries (x, y, 1) to
(x′, y′, 1).
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2. Denoting the infinitesimal generators in this representation by 3 by 3 matrices Ta, Tb and Tθ,
show that they satisfy the Lie algebra

[Ta, Tb] = 0, [Tθ, Ta] = iTb, [Tθ, Tb] = −iTa.

3. Show that the three operators

T̂a = −i
∂

∂x
, T̂b = −i

∂

∂y
, T̂θ = i

(

y
∂

∂x
− x

∂

∂y

)

also satisfy the same Lie algebra.

4.10.5 Killing form

This is a more abstract problem, you need to read carefully the notes on Lie algebras before you try
to solve it.

Associated with a Lie algebra there is a Killing form defined in terms of the structure constants:

gpq = gqp ≡
∑

r,s

cprs cqsr

Show that for the Lie algebra so(3), the Killing form is gpq = −2δpq. What is the Killing form for the
Euclidean group E2?

4.10.6 More on vector operators

(a) Show that if V̂± ≡ V̂1 ± iV̂2, V̂3 are the three components of a vector operator, then

[

Ĵ2, V̂q

]

= 0
[

Ĵ3, V̂±

]

= ± V̂± and
[

Ĵ±, V̂∓

]

= ±2V̂3,
[

Ĵ±, V̂3

]

= ∓V̂±.

while all other commutators of Ĵ with V̂ vanish.
(b) Given vector operators x̂i and P̂j , such that [x̂i, P̂j ] = iδij , show that the operator x̂P̂ is a

reducible tensor operator, and decompose it into its three irreducible components.
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