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4.1 Introduction

In this lecture we are going to introduce some further concepts and general properties that are
useful to describe simple quantum mechanical systems. We discuss how to deal with operators
that have a continuous spectrum, and discuss some properties of expectation values and wave
functions. We conclude the chapter by introducing briefly the Heisenberg representation,
which is an alternative way to describe the time evolution of a quantum system.

4.2 Continuous spectrum

Until now we have discussed a number of examples where operators have a discrete spectrum,
i.e. where the eigenvalues are numbered by some integer index k. 1 However there are
operators that have a continuous spectrum, like e.g. the energy and the momentum of an
unbound state, or the position operator X̂. In order to deal with these cases, we need
to generalize the formalism that we have introduced so far. As you will see below, the
modifications are minimal, and rather straightforward.

4.2.1 Eigenvalue equation

Let us denote by f̂ the operator associated to an observable with a continuous spectrum, the
eigenvalue equation takes the form:

f̂ψf (x) = fψf (x), . (4.1)

Once again, a generic state can be expanded as a superposition of eigenstates:

ψ(x) =

�
df c(f)ψf (x) ; (4.2)

you should compare this expression with its analogue Eq. (2.18) in the case of discrete
eigenvalues.

The coefficient of the expansion Eq. (4.2) is obtained by taking the scalar product:

c(f) = �f |ψ� =

�
dxψf (x)

∗ψ(x) . (4.3)

The probabilistic interpretation of the wave function can be generalized:

The probability of finding a result between f and f+df for the observable
f̂ is given by:

|c(f)|2 df .

1
In the case of a discrete spectrum, the total number of eigenvalues may well be infinite, however the

eigenvalues are labeled by integer numbers.
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Thus we derive the normalization condition:�
df |c(f)|2 = 1 . (4.4)

4.2.2 Orthonormality

Following the steps performed to obtain Eq. (2.16), we have:
�

dxψf �(x)∗f̂ψf (x) = f

�
dxψf �(x)∗ψf (x) , (4.5)

�
dxψf (x)

∗f̂ψf �(x) = f �
�

dxψf (x)
∗ψf �(x) . (4.6)

Taking the complex conjugate of Eq. (4.5), and using the fact that f̂ is Hermitean, yields:
��

dxψf (x)
∗f̂ψf �(x)

�∗
=

�
dxψf �(x)∗f̂ †ψf (x) , (4.7)

=

�
dxψf �(x)∗f̂ψf (x) . (4.8)

Combining the results above:

�
f − f ��

�
dxψf �(x)∗f̂ψf (x) = 0 , (4.9)

and therefore, if f �= f �,
�f �

|f� = 0 . (4.10)

Now comes a subtle point. The norm of the state |ψ� is given by:

�ψ|ψ� =

�
df df � c(f)∗c(f �)�f |f �

� (4.11)

=

�
df |c(f)|2

�
df �

�f |f �
� , (4.12)

where we used the orthogonality result Eq. (4.10). Now the integral over df � in Eq. (4.12)
vanishes for any finite value of �f |f�. Therefore we need to impose that �f |f� is infinite, and
normalized so that �

df �
�f �

|f� = 1 . (4.13)

The delta function introduced by Dirac satisfies precisely this condition, so we can write:

�f �
|f� =

�
dxψf �(x)∗ψf (x) , (4.14)

= δ(f − f �) . (4.15)

Properties of the Dirac delta are summarized below.
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4.2.3 Example: the free case

As an example of a system with a continuous spectrum we shall briefly recall the properties
of the free quantum particle (V = 0). The Schrödinger equation reads:

−
�2
2m

d2

dx2
ψ(x) = Eψ(x) . (4.16)

For E > 0 this equation has got two solutions:

uk,1(x) = eikx, uk,2(x) = e−ikx, k =

�
2mE

�2 . (4.17)

Each level (except for E = 0) is doubly degenerate, with the two solutions representing re-
spectively particles travelling to the right and to the left. It is easy to check that the two
eigenfunctions are also eigenfunctions of the momentum operator, and therefore correspond
to states with momentum ±�k. Note that we have used two indices to identify the eigenfunc-
tions: k > 0 is related to the value of the energy, and we can see that it spans a continuous
spectrum. The second index is discrete, and runs from 1 to 2, simply to distinguish the two
degenerate functions, i.e. the solution propagating to the right from the solution propagating
to the left.

The time-dependent solution of Schrödinger equation reads:

Ψk(x, t) ≡ A exp{i(kx− ωt)} = A exp{i(px/�− Et/�)}

which is an eigenfunction of both energy:

i� ∂

∂t
Ψk(x, t) = �ωΨk(x, t) ≡ EΨk(x, t)

and momentum:

P̂Ψk(x, t) = −i� ∂

∂x
Ψk(x, t) = �kΨk(x, t) ≡ pΨk(x, t)

and yet is not normalisable because

|Ψk(x, t)|
2 = |A|

2 exp{i(kx− ωt)} exp{−i(kx− ωt)} = |A|
2

so that � ∞

−∞
|Ψk(x, t)|

2 dx = |A|
2
� ∞

−∞
dx = ∞

However, the physical interpretation is obvious; we are equally likely to find the particle
anywhere in the interval −∞ < x < ∞, so that the probability density is uniform. This can
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be regarded as a direct consequence of the Heisenberg uncertainty principle: the uncertainty
in momentum is zero and therefore the uncertainty in position must be infinite.

We can circumvent this technical difficulty by, for example, pretending that we are deal-
ing with a finite system and only taking the limit of an infinite system at the end of any
computation.

Note that solutions with E < 0 yield a purely imaginary k, and therefore the eigenfunc-
tions are not even bounded. Hence they do not represent physical states. The only allowed
states for the free particle are the ones with positive (kinetic) energy.

We can now readily check that the eigenfunctions of the continuous spectrum found above
satisfy the orthogonality and completeness relations discussed in Sects. 4.2.1, and 4.2.2:

ψ(x) =

� ∞

0
dk

�
f̃(k)eikx + f̃(−k)e−ikx

�
, (4.18)

�
dx eix(k−k�) = 2πδ(k − k�) . (4.19)

Eq. (4.18) is nothing but the well-known fact that normalizable functions admit a Fourier
transfom. On the other hand Eq. (4.19) is a property of the Dirac delta, that you can find
in the box below 2.

Note that Eq. (4.19) implies that the properly normalized eigenfunctions are:

uk,1(x) =
1

√
2π

eikx, uk,2(x) =
1

√
2π

e−ikx, k =

�
2mE

�2 . (4.20)

2
You will see again both these results in one of the Mathematics courses
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Mathematical aside
The delta function is the natural extension of the familiar Kronecker delta δij to the case of
continuous variables; it is defined as:

δ(x) = 0, if x �= 0, δ(0) = ∞ , (4.21)

and � b

a
dx δ(x)g(x) =

�
g(0), if a < 0 < b ,

0, otherwise ,
(4.22)

for any continuous function g(x).
The following properties are very useful when dealing with delta functions.

� b

a
dx δ(x− c)g(x) =

�
g(c), if a < c < b ,

0, otherwise ;
(4.23)

δ(−x) = δ(x) ; (4.24)

δ(ax) =
1

|a|
δ(x) ; (4.25)

g(x)δ(x− y) = g(y)δ(x− y) ; (4.26)

xδ(x) = 0 ; (4.27)

d

dx
θ(x) = δ(x) , where θ(x) =

�
1, if x ≥ 0 ,

0, if x < 0 ;
(4.28)

δ(g(x)) =
r�

i=1

1

|g�(xi)|
δ(x− xi) , where g(xi) = 0 ; (4.29)

� ∞

0
dx g(x)δ(x) =

1

2
g(0) . (4.30)

The delta function can be defined as the limit of ordinary functions, here are some examples,
that you are encouraged to sketch to visualize what happens.

δ(x) = lim
�→0

1
√
π�

e−x2/�2 , (4.31)

= lim
L→∞

sin(Lx)

πx
, (4.32)

= lim
L→∞

sin2(Lx)

πLx2
, (4.33)

= lim
�→0

1

π

�

�2 + x2
. (4.34)
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The folowing representation for the delta function is very useful:

� ∞

−∞
dx eix(k−k�) = 2πδ(k − k�) . (4.35)

4.2.4 Spectral decomposition

For a generic operator Ô, the eigenvalue spectrum can be made of discrete eigenvalues On

and continuous values f . In this case we need to consider both the eigenfunctions of the
discrete spectrum and those of the continuos spectrum to have a basis to expand quantum
states in.

ψ(x) =
�

n

cnψn(x) +

�
df c(f)ψf (x) (4.36)

|ψ� =
�

n

�n|ψ� |n�+

�
df �f |ψ� |f� . (4.37)

Eq. (4.36) summarizes the completeness relation for both discrete and continuous spectra.

4.3 General properties

There are some nice theorems that can be derived from the postulates of the theory. They
are logical consequences of the principles that we have set up, and do not require further
assumptions. They yield further information on the dynamics of the systems that we wish
to study.

4.3.1 Energy expectation value

The expectation value of the energy in a quantum state is given by:

�Ψ|Ĥ|Ψ� =

�
dxΨ(x, t)∗(

P̂ 2

2m
+ V̂ )Ψ(x, t) (4.38)

= −
�2
2m

�
dxΨ(x, t)∗

d2

dx2
Ψ(x, t) +

�
dxΨ(x, t)∗V (x)Ψ(x, t) (4.39)

=
�2
2m

�
dx

����
d

dx
Ψ(x, t)

����
2

+

�
dxV (x) |Ψ(x, t)|2 (4.40)

≥ Vmin

�
dx |Ψ(x, t)|2 = Vmin , (4.41)
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i.e. the expectation value of the energy is always larger than the minimum of the potential
energy:

�E� ≥ Vmin . (4.42)

4.3.2 Ehrenfest’s theorem

Using Eq. (3.39) the following equations can be proved:

d

dt
�mX̂� = �P̂ � , (4.43)

d

dt
�P̂ � = −�

d

dX
V (X̂)� . (4.44)

This result is known as Ehrenfest’s theorem. It is interesting to note that the expecta-
tion values of the position and momentum operators satisfy the same equations of mo-
tion that we find in Newtonian mechanics. Eq. (4.43) is easily proven using the fact that�
mX̂, P̂ 2/(2m)

�
= i�P̂ . In order to obtain Eq. (4.44) you need to use the following relation:

�
P̂ , V (X̂)

�
= −i� d

dX
V (X̂) , (4.45)

where (d/dx)V denotes the derivative of V with respect to its argument.

4.3.3 Degeneracy and oscillations

The results in Secs. 4.3.1, and 4.3.2 apply to systems in any number of dimensions. The
following results instead are only valid for one-dimensional systems.

The discrete energy levels in a one-dimensional potential well are not
degenerate.

Proof. Let us assume the contrary, namely that there is an energy value E for which we have
two degenerate eigenstates ψ1 and ψ2. The two eigenfunctions satisfy the same equation:

ψ��
1 = −

2m

�2 (E − V (x))ψ1 , (4.46)

ψ��
2 = −

2m

�2 (E − V (x))ψ2 . (4.47)

Multiplying the first equation by ψ2 and the second one by ψ1, and subtracting them, we
obtain:

ψ2ψ
��
1 − ψ1ψ

��
2 = 0 . (4.48)
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Integrating with respect to x yields:

ψ�
1(x)ψ2(x)− ψ�

2(x)ψ1(x) = const . (4.49)

Since the eigenstates must be normalizable, we deduce that ψ1 = ψ2 = 0 at x = +∞, and
hence const = 0,

ψ�
1(x)ψ2(x)− ψ�

2(x)ψ1(x) = 0 . (4.50)

Integrating again with respect to x:

logψ1 = logψ2 + const , (4.51)

i.e. ψ1 and ψ2 are proportional and therefore describe the same eigenstate, which contradicts
the initial statement.

The second theorem states that

The wave function of the n-th discrete energy level has n− 1 zeroes.

In particular, the wave function of the ground state does not vanish, for any value of x.
We shall not prove this theorem explicitly.

4.4 Heisenberg representation

Let us conclude this lecture by discussing a different way to characterize the time evolution
of a quantum system.

In the Schrödinger picture the state of the system evolves in time, while the operators
are usually time-independent. The expectation value of an observable O at time t is given
by:

�Ψ(t)|Ô|Ψ(t)� = �Ψ(0)|eiĤt/�Ôe−iĤt/�
|Ψ(0)� , (4.52)

where we have used Eq. (3.17) to express |Ψ(t)� as a function of |Ψ(0)�.
We can now interpret Eq. (4.52) as the expectation value of a time-dependent observable:

ÔH(t) = eiĤt/�Ôe−iĤt/� , (4.53)

whose expectation is computed between time-independent states. This is called the Heisen-

berg representation.
The dynamics in the Heisenberg representation is dictated by an equation describing the

time evolution of the operators:

i� d

dt
ÔH(t) =

�
ÔH , Ĥ

�
. (4.54)

Depending on the problem that you are trying to solve, one representation may be more
effective than the other. The physical predictions however must be identical!
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4.5 Summary

As usual, we summarize the main concepts introduced in this lecture.

• Completeness and orthogonality relations for the continuous spectrum.

• Free particle as an example of the above concepts.

• More properties of the solutions of Schrödinger equation.

• The Heisenberg representation.


