
Methods of Mathematical Physics
Exam style questions

1. Cauchy’s integral formula states that if f(z) is analytic within and on a closed
contour C

f(z0) =
1

2πi

∮
C

f(z)

z − z0

dz

where z0 is within the contour C.

Consider a function f(z) analytic in the upper half plane and on the real axis,
and such that |f(z)| → 0 as |z| → ∞ for 0 ≤ argz ≤ π. Show by using Cauchy’s
integral formula and an appropriate closed contour C that

f(z0) =
1

2πi

∫ ∞

−∞

f(x)

x− z0

dx

where the integral is along the real axis . [6]

Now set z0 = x± iε and let z0 approach the real axis. Show that∫ ∞

−∞

f(x)

x− x0 ∓ iε
dx = P

∫ ∞

−∞

f(x)

x− x0

dx± iπf(x0)

where P indicates the Cauchy principal value.

[6]

Hence deduce
1

x− x0 ∓ iε
= P

1

x− x0

± iπδ(x− x0)

and

f(x0) =
1

πi
P
∫ ∞

−∞

f(x)

x− x0

dx [4]

Now consider a function f such that

f(−x) = f ∗(x) .

Let f(x0) = u(x0) + iv(x0),where u(x0) and v(x0) are real functions, and show

u(x0) =
2

π
P
∫ ∞

0

xv(x)

x2 − x2
0

dx

v(x0) = − 2

π
P
∫ ∞

0

x0u(x)

x2 − x2
0

dx [9]
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2.

(a) The Gamma function may be defined as

Γ(x) =
∫ ∞

0
ux−1e−u du where Re[x] > 0 .

Show that

Γ(1) = 1 ; Γ(1/2) =
√

π ; Γ(−1/2) = −2
√

π [5]

Show that the Laplace transform of tλ is given by

L[tλ] =
Γ(λ + 1)

sλ+1 [3]

(b) The temperature distribution in a semi-infinite rod (x > 0) obeys

∂2T (x, t)

∂x2
=

1

κ

∂T

∂t

with boundary conditions

T (x, 0) = 0 x > 0

T (0, t) = T0

Show that the Laplace transform with repsect to t

F (x, s) =
∫ ∞

0
T (x, t)e−st dt

obeys
∂2F (x, s)

∂x2
= s

F (x, s)

κ
.

Hence deduce

[3]

F (x, s) =
T0

s
exp

(
−(s/κ)1/2x

)
. [4]

(c) Identify the singularity of F (x, s) which controls the large t behaviour of
T (x, t)

Using the results of part a) compute the first three non-zero terms in the
large t asymptotic expansion of F (x, t). [10]
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3. The generating function for the Bessel functions Jn(x) is given by

G(x, t) =
∞∑

n=−∞
tnJn(x) = exp

[
x

2

(
t− 1

t

)]
.

From the symmetries G(x, t) = G(x,−1/t), G(x, t) = G(−x, 1/t) deduce that

J−|n|(x) = (−1)nJ|n|(x) = J|n|(−x) . [4]

Use the product of generating functions

G(x + y, t) = G(x, t)G(y, t)

to derive

Jn(x + y) =
∞∑

k=−∞
Jk(x)Jn−k(y) . [4]

By expanding the generating function show that

Jn(x) =
∞∑

s=0

(−1)s

(n + s)! s!

(
x

2

)n+2s

for n ≥ 0 . [6]

Show that

Rn(x)Jn(x) = Jn+1(x) where Rn(x) =

(
n

x
− d

dx

)

Ln(x)Jn(x) = Jn−1(x) where Ln(x) =

(
n

x
+

d

dx

)
[6]

Hence deduce the second order differential equation satisfied by Jn(x). [5]
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4. June 2002 Q1

Consider the partial differential equation

∇2u(x)−m2u(x) = ρ(x) (1)

in three dimensions.

a. Is this equation parabolic, elliptic, or hyperbolic? [1]

b. If G(x,x′) satisifies (∇2 −m2)G(x,x′) = δ(x− x′) show that

G(x,x′) = −(2π)−3
∫

d3k
e−ik·(x−x′)

|k|2 + m2
.

[4]

c. Show that ∫ π

0
dθ sin θ e−iκr cos θ =

2 sin κr

κr
.

[5]

d. Show by contour integration that∫ ∞

0
dκ

2κ sin κr

(κ2 + m2)
= πe−mr

[5]

e. Hence prove that

G(x,x′) = − e−m|x−x′|

4π|x− x′|
.

[6]

f. Write down the solution to equation (1). [4]

5. June 2002 Q2

a. Find the Fourier transform of f(x) = e−x2/2V . [5]

b. Consider the function

g(x) =
∞∑

n=−∞
f(x + 2πn) =

∞∑
n=−∞

e−(x+2πn)2/2V ; (2)

show it is a periodic function, and find its period. [5]

c. Deduce that g(x) has a Fourier series

g(x) =
∞∑

k=−∞
g̃ke

ikx; (3)

and show that g̃k =
√

2πV e−
1
2k2V . [8]

d. Discuss how to use the expansions (2) and (3) to find approximate values
for g(x) for an arbitrary value of x in the cases where

(a) V is large, [3]

(b) V is small. [4]
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6. June 2002 Q3

The Bessel function J0(x) may be defined by Schläfli’s integral

J0(x) =
1

2πi

∮
|t|=1

dt

t
exp

[
x

2

(
t− 1

t

)]
.

For real x � 1 its asymptotic expansion may be found using the method of
steepest descents.

a. Show that in the complex t plane the dominant contributions to the integral
come from regions around t± = ±i + 1/x + O(1/x2). [4]

b. Show that the values of the integrand at the saddle points are

exp
{
±i
[
x− π

2
+ O

(
1

x

)]}
.

[5]

c. Show that the steepest descents contour passes through the saddle points
t± at angles α+ = 3π/4 and α− = π/4 to the positive real t axis. [8]

d. Show that the leading asymptotic behaviour is

J0(x) ∼
√

2

πx
cos

(
x− π

4

)
. [8]

[N.B. This question employs a slightly different approach to that of the lectures.]

7. Consider the integral

fR(x) ≡ 1

2πi
lim
ε→0

∫ R

−R
dz

eixz

z − iε
,

where x > 0.

a. Show that

fR(x) = 1− 1

2π

∫ π

0
dθ eixReiθ

.

[4]

b. Show that

|fR(x)− 1| ≤ 1

2π

∫ π

0
dθ e−xR sin θ.

[4]

c. Prove that sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2. [8]
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d. Show that

|fR(x)− 1| ≤ 1

2xR
.

[6]

e. Prove that

lim
R→∞

fR(x) = θ(x) ≡
{

1 if x > 0,
0 if x < 0.

[3]

8. June 2001 Q3

Calculate the leading asymptotic behaviour of the Airy integral

Ai(−x) =
1

π

∫ ∞

0
dw cos(

1

3
w3 − xw) x > 0 ,

as x→∞.

[25]

9. Let y1 and y2 be two solutions of Bessel’s equation x2y′′ + xy′ + (x2 − ν2)y = 0.

a. If W
(
y1(x), y2(x)

)
= W (x) is their Wronskian show that x2W ′ + xW = 0,

and hence that W (x) = c/x where c is a constant. [4]

b. Using Frobenius’ method one can show that the Bessel function

Jν(x) ≡
∞∑

r=0

(−1)r

r!Γ(ν + r + 1)

(
x

2

)ν+2r

is a solution of of Bessel’s equation. Manipulate this series to show that

Jν−1(x)± Jν+1(x) =
∞∑

r=0

(−1)r(ν + r ∓ r)

r!Γ(ν + r + 1)

(
x

2

)ν+2r−1

.

and hence obtain the identities

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x)

Jν−1(x)− Jν+1(x) = 2J ′
ν(x).

[6]

c. Prove that

W
(
Jν(x), J−ν(x)

)
=

x

2ν

(
Jν−1(x)J−ν−1(x)− Jν+1(x)J−ν+1(x)

)
.

[6]

d. Show that

W
(
Jν(x), J−ν(x)

)
= −2 sin νπ

πx
.

Hint: Consider the behaviour of W (x) for small x, and recall that B(1 +
ν,−ν) = −π/ sin νπ. [6]

e. Under what circumstances are Jν and J−ν linearly independent? [3]
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10. June 2003 Q1

(a) Find the position and nature of the singularities of the following differential
equation.

x2y′′(x) + xy′(x)− (x2 + ν2)y(x) = 0 . (4) [6]

(b) Set y(x) = x−
1
2 u(x) and show that u satisfies

u′′(x)−
[
1 +

(
ν2

x2
− 1

4x2

)]
u(x) = 0 . [5]

(c) Hence deduce that a solution which is bounded as x→∞ has the asymp-
totic behaviour

y(x) ∼ Ax−
1
2 e−x as x→∞ . [4]

(d) A solution of (4) is given by

y(x) =
1

2

∫ ∞

0
dt tν−1 exp

[
−x

2

(
t +

1

t

)]
,

[you are not required to show this].

Using Laplace’s method determine the asymptotic behaviour of this solu-
tion as x→∞. [10]
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11. June 2003 Q2

A recurrence relation for Hermite polynomials is given by

Hn+1(x) = 2x Hn(x)− 2nHn−1(x) n ≥ 0 (1)

where H0(x) = 1 and H−1(x) = 0.

Consider the generating function defined as

G(x, t) =
∞∑

n=0

tn

n!
Hn(x) . (2)

(a) Show that
∂G(x, t)

∂t
=

∞∑
n=0

tn

n!
Hn+1(x)

tG(x, t) =
∞∑

n=1

n tn

n!
Hn−1(x) . [5]

(b) Hence deduce

G(x, t) = e−t2+2tx . (3) [4]

(c) From expression (3) for G(x, t) establish the relation

dHn(x)

dx
= 2n Hn−1(x) . (4) [4]

(d) Using the definition (2) of G(x, t) and the expression (3) deduce the integral
representation

Hn(x) =
n!

2πi

∮
dt

e−t2+2tx

tn+1
, (5)

where the closed contour encircles the origin.

Verify that this expression satisfies the relation (4). [5]

(e) Use the integral representation (5) to demonstrate the orthogonality of the
Hermite polynomials

∫ ∞

−∞
dx e−x2

Hm(x)Hn(x) = 2nn!
√

π δm,n . [7]

Hint: Perform the x integral first then evaluate the subsequent two contour
integrals.
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12. June 2003 Q3

Consider the wave equation in three space dimensions and one time dimension
for a system with periodic forcing

∇2u(x, t)− 1

c2

∂2u(x, t)

∂t2
= f(x)e−iω0t . (1)

(a) Show that u(x, t) may be written as

u(x, t) = u(x)e−iω0t ,

where u(x) satisfies

(∇2 + k2
0) u(x) = f(x) with k0 =

ω0

c
. [2]

(b) If G(x, x′) satisfies

(∇2 + k2
0) G(x, x′) = δ(x− x′)

use G(x, x′) to construct a solution to (1) . [4]

(c) Show by using Fourier transformation that

G(x, x′) = − 1

(2π)3

∫
d3k

eik.(x−x′)

k2 − k2
0

where k = |k| . [5]

(d) Perform the angular integrals in k-space to obtain

G(x, x′) =
1

(2π)2

∫ ∞

−∞
dk

k

ir

e−ikr

k2 − k2
0

where r = |x− x′| . [5]

(e) Perform this integral by contour integration. You should choose a contour
that corresponds to outgoing waves u ∼ ei(k0r−ω0t), i.e., you should obtain
the retarded Green function. [9]

13. June 2004 Q1

The Legendre Polynomials may be defined through the generating function

G(x, t) =
1

(1− 2xt + t2)1/2

where G(x, t) is defined as

G(x, t) =
∞∑

n=0

tnPn(x) .
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(a) By taking derivatives of G(x, t) with respect to t and x derive the following
recursion relations

(n + 1)Pn+1(x) + nPn−1(x) = (2n + 1)xPn(x)

P ′
n+1(x)− 2xP ′

n(x) + P ′
n−1(x) = Pn(x) . [8]

(b) Show that ∫ 1

−1
G2(x, t)dx =

1

t
[ln(1 + t)− ln(1− t)] .

By expanding the r.h.s. in powers of t and assuming∫ 1

−1
dxPn(x)Pm(x) = 0 for n 6= m

deduce ∫ 1

−1
Pn(x)Pn′(x)dx =

2δn,n′

2n + 1
. [7]

(c) A function f(x) may be expressed as

f(x) =
∞∑

k=0

akPk(x) .

Use the result of part (b) to show that

an = (n +
1

2
)
∫ 1

−1
dxf(x)Pn(x)

and

δ(x− x′) =
1

2

∞∑
k=0

(2k + 1)Pk(x)Pk(x
′) . [5]

(d) Show that G(x, t) implies the following integral representation of Pn(x)

Pn(x) =
∮ dt

2πi

1

tn+1(1− 2xt + t2)1/2
,

where the closed contour encircles the origin. Specify the singularities of
the integrand for the cases |x| < 1 and |x| ≥ 1 and discuss the restrictions
they impose on the radius of a circular contour. [5]
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14. June 2004 Q2
(a) The Laplace transform of a function f(t) is defined as

L[f ] =
∫ ∞

0
f(t)e−stdt , where s > 0 .

Show that

L[tf ] = − ∂

∂s
L[f ] ,

L

[
df

dt

]
= −f(0) + sL[f ]

and

[3]

L[tλ] =
Γ(λ + 1)

sλ+1
where Γ(x) =

∫ ∞

0
ux−1e−udu . [2]

(b) Consider the differential equation

t2
d2y(t)

dt2
+ t

dy(t)

dt
− (1 + t2)y(t) = 0 .

Let g(s) denote the Laplace transform of a solution of this equation which
is bounded as t→∞.

Show that g(s) obeys

(s2 − 1)g′′(s) + 3sg′(s) = 0 . [5]

Integrate this equation to obtain

g′(s) =
A

(s2 − 1)3/2
, [3]

where A is a constant.

Assuming the inversion integral for Laplace transforms, deduce that

y(t) = −A

t

∫
C

ds

2πi

est

(s2 − 1)3/2
,

where you should specify the contour C. [2]

(c) Sketch the analytic structure of the integrand and identify the singularity
that controls the large t behaviour of y(t). [3]

Compute the first two non-zero terms in the large t asymptotic expansion
of y(t). [7]
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15. June 2004 Q3

Consider the Green function G(x, t) in three space dimensions and one time
dimension defined by

[
∇2 − ∂2

∂t2
−m2

]
G(x, t) = δ(x)δ(t) .

Show by Fourier transformation that

G(x, t) =
1

(2π)4

∫
d3k

∫
dω

eik.x−iωt

(ω2 − k2 −m2)
where k = |k| . [5]

Perform the angular integrations in k-space to obtain

G(x, t) =
1

(2π)3r

∫ ∞

−∞
dk

k

i
eikr

∫ ∞

−∞
dω

e−iωt

ω2 − Ω2
where Ω =

√
k2 + m2

and r = |x|. [5]

Perform the ω integral by contour integration, choosing the contour to give

∫ ∞

−∞
dω

e−iωt

ω2 − Ω2
= −2π

sin(Ωt)

Ω
θ(t) ,

where θ(t) is the usual Heaviside step function. [7]

Use the following results (which you are not required to show) for Bessel functions
J0, J1

1

2π

∫ ∞

−∞
dk eikr sin(Ωt)

Ω
=

1

2
J0

(
m
√

t2 − r2
)
θ(t2 − r2)

J ′
0(y) = −J1(y)

J0(0) = 1

to deduce that

G(x, t) =

[
m

4π
√

t2 − r2
J1

(
m
√

t2 − r2
)
θ(t− r)− 1

4πr
δ(r − t)

]
θ(t) . [5]

Interpret the two terms in G(x, t) identifying the case m = 0 . [3]
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