Methods of Mathematical Physics

Exam style questions

Cauchy’s integral formula states that if f(z) is analytic within and on a closed
contour C' .
e,

2mi Jo z — 2

/ (Zo) =
where z is within the contour C.

Consider a function f(z) analytic in the upper half plane and on the real axis,
and such that |f(z)| — 0 as |z| — oo for 0 < argz < 7. Show by using Cauchy’s
integral formula and an appropriate closed contour C' that

_ Lo f@)
f(ZO)_% -0 & — 2o dr

where the integral is along the real axis . [6]

Now set zy = x £ i€ and let zy approach the real axis. Show that

[ dx:P/_Zj_(x) 0 + i f (o)

—00 T — To F 1€ X [6]
where P indicates the Cauchy principal value.

Hence deduce

1 — =P ! +imd(x — xp)
T — o F 1€ T — Xy
and .
f(xg) = =P /() dx [4]

T J-oco T — Xy

Now consider a function f such that

f(=2) = ().

Let f(zo) = u(zo) + iv(xg),where u(xy) and v(zo) are real functions, and show

u(zg) = 2P/OO z0() dx

x? — xo
.ﬁEoU
vl@o :_7P/ :U2—x [9]



(a)

The Gamma function may be defined as

[(x) = /Oo u*te™™ du where Re[r]>0.

0

Show that

F)=1; T/2)=vr ; T(-1/2)=-2V7

Show that the Laplace transform of ¢* is given by
F'(A+1)

Al
L[t ] T gL

The temperature distribution in a semi-infinite rod (z > 0) obeys

PT(x,t) 10T
or2 kOt

with boundary conditions

T(z,0) = 0 x>0
T(0,t) = Ty

Show that the Laplace transform with repsect to t
F(z,s) :/ T(z,t)e " dt
0
obeys

O*F(z,s) F(z,s) ‘

ox? K

Hence deduce

F(x,s) = jjexp (—(s//f)l/Qx) .

Identify the singularity of F'(x,s) which controls the large ¢ behaviour of

T(x,t)

Using the results of part a) compute the first three non-zero terms in the

large t asymptotic expansion of F(z,t).

[10]



3. The generating function for the Bessel functions J,(z) is given by

x,t) = nioo t" Jn(x) = exp B (t - 1)] .

From the symmetries G(z,t) = G(x,—1/t), G(x,t) =

o) (z) = (=1)"Jjn) (@) = Jjn)(—2) -

Use the product of generating functions

Gz +y,t) = Gz, t)G(y,t)

to derive

(x4 y) = Z Jy(z () .

k=—o00

By expanding the generating function show that

Jn(x) _ i (_1)5 (x>n+23

=(n+s)lst \2 for »20.

Show that

R, (x)Jn(x) = Jyy1(x) where R, (x)

(

L,(x)Jn(z) = Jp_1(x) where L,(x)= <

813

&=

)
)

Hence deduce the second order differential equation satisfied by J, ()

| e

n
—+
T

0.
&

G(—x,1/t) deduce that



4. June 2002 Q1

Consider the partial differential equation
V2u(x) — m2u(x) = p(x) 1)

in three dimensions.

a. Is this equation parabolic, elliptic, or hyperbolic?

b. If G(x,x) satisifies (VZ — m?)G(x,x’) = §(x — x') show that
ik (x—x)

3
G(X, Xl) 27T /d W

c. Show that ] N
/ df sin @ ¢ rreostd — M
’ KT

d. Show by contour integration that

2K sin Kr
/ d/{ 5 5 =me ™
(k%2 +m?)

e. Hence prove that

_ _~
em\x x|

G(x,x') = —

drlx — x|

f. Write down the solution to equation (1).

5. June 2002 Q2

a. Find the Fourier transform of f(z) = e *"/?V,
b. Consider the function
Z f(z+2mn) = Z e_(xH’m)Q/zV; (2)

show it is a periodic function, and find its period.

c. Deduce that g(x) has a Fourier series

Yo gee™; (3)

k=—o00

and show that g, = V21 Ve ¥V,

d. Discuss how to use the expansions (2) and (3) to find approximate values
for g(x) for an arbitrary value of x in the cases where

(a) V is large,
(b) V' is small.

[4]



6. June 2002 Q3

The Bessel function Jy(x) may be defined by Schlafli’s integral

0o = 5 o5 (3]

For real x > 1 its asymptotic expansion may be found using the method of
steepest descents.

a. Show that in the complex ¢ plane the dominant contributions to the integral
come from regions around ¢ty = +i + 1/z + O(1/2?).

b. Show that the values of the integrand at the saddle points are
1
exp{j:i [m—W—FO()}}.
2 x

c. Show that the steepest descents contour passes through the saddle points
t+ at angles ay = 37/4 and a_ = 7/4 to the positive real ¢ axis.

d. Show that the leading asymptotic behaviour is
2 s
Ji ~ | — -
o) T o8 (w 4>

[N.B. This question employs a slightly different approach to that of the lectures.]

7. Consider the integral

where x > 0.

a. Show that
f -1 7/ do e sze‘G

b. Show that -
—1l < / do —mRsinG.
a(e) =1 < o [Tdoe

c. Prove that sinf > 20 /7 for 0 < 0 < /2.

[4]



d. Show that )
-1 < —.
|fr(z) —1] < R

e. Prove that

. 1 ifx >0,
lim fr(z) = 0(z) E{ 0 ifx<0.

R—o0

June 2001 Q3
Calculate the leading asymptotic behaviour of the Airy integral

1 oo 1
Ai(—x) = —/ dw cos(gw?’ — zw) x>0,
7 Jo

as r — OQ.

Let y; and y» be two solutions of Bessel’s equation z%y” + zy/ + (2* — v?)y = 0.

a. If W(y1 (x), yg(a:)) = W (z) is their Wronskian show that z*W’ + zW = 0,
and hence that W (x) = ¢/x where ¢ is a constant.

b. Using Frobenius’ method one can show that the Bessel function

0 (_ 1)7“ <ZE> v+42r
Jo(z) = =
(z) ;HF@—H%— 1) \2
is a solution of of Bessel’s equation. Manipulate this series to show that

st - SR (2

and hence obtain the identities
2v
JV_1($) + Jl,+1<l') = ;Jl,(ﬁl?)
J,1(x) — Jua(x) = 2J(x).

2

c. Prove that

W (Ju(@), T (2)) = ;—V(J,,_l(x)J_l,_l(x) — it (0) T (7).

d. Show that .
2sin v

W (T (), Jou(@)) = = —

Hint: Consider the behaviour of W(x) for small x, and recall that B(1 +
v,—v) = —m/sinvm.

e. Under what circumstances are J, and J_, linearly independent?

(6]

[3]

[25]

[6]



10. June 2003 Q1

(a) Find the position and nature of the singularities of the following differential
equation.

2%y (@) + 2y () — (2% + v")y(z) = 0. (4)

(b) Set y(z) = z~2u(x) and show that u satisfies

(c) Hence deduce that a solution which is bounded as x — oo has the asymp-

totic behaviour

y(x) ~ Az 2¢™® as 1z — oco.

(d) A solution of (4) is given by

1 foo xT 1
el )
y(v) 2/0 exp | =5 (2]

[you are not required to show this].

Using Laplace’s method determine the asymptotic behaviour of this solu-
tion as x — oo.

[10]



11.

June 2003 Q2

A recurrence relation for Hermite polynomials is given by

Hyi(x) =22 Hy(x) — 2nH, 1(x) n>0 (1)

where  Hy(z) =1 and H_;(x) = 0.

Consider the generating function defined as

(a)

(b)

(c)

(d)

Show that

n=0
X nt"
tG(z,t) = o H, 1(x)
n=1 :
Hence deduce
Gz, t) = e+ (3)

From expression (3) for G(z,t) establish the relation

dH,(x)
dx

=2nH, 1(x). (4)

Using the definition (2) of G(z,t) and the expression (3) deduce the integral

representation
n et 2t
Hy(z) = - f dtwa (5)
where the closed contour encircles the origin.

Verify that this expression satisfies the relation (4).

Use the integral representation (5) to demonstrate the orthogonality of the
Hermite polynomials

/ Y dr e Hyy (1) Ho(2) = 200/ Sy -

Hint: Perform the x integral first then evaluate the subsequent two contour
integrals.

[5]

[4]

[7]



12. June 2003 Q3

Consider the wave equation in three space dimensions and one time dimension
for a system with periodic forcing

Viu(z, 1) - 1 6u8(tt) — fla)e. (1)

(a) Show that u(z,t) may be written as

u(g, t) — u(g)efiwot’

where u(z) satisfies

(V2 + k) u(z) = f(z) with ko= % .

(b) If G(z, 2') satisfies
(V* + k) G(z, 2) = 0(z — )
use G(z, z') to construct a solution to (1) .

(c) Show by using Fourier transformation that

, 1 5 eik-(z—2')
G(&, &) = _(271')3 / d’k m where k = |E‘ .

(d) Perform the angular integrals in k-space to obtain

) 1 ok etk ,
G(Lg):(%r)z /_Oodk”M where r = |z —2/|.

(e) Perform this integral by contour integration. You should choose a contour
that corresponds to outgoing waves u ~ e'o7=«0t) j e you should obtain
the retarded Green function.

13. June 2004 Q1

The Legendre Polynomials may be defined through the generating function

1

G(.’,U,t) = (1 _ 2$t+t2)1/2

where G(x,t) is defined as

G(z,t) = it"Pn(x) :



(a) By taking derivatives of G(z,t) with respect to ¢t and z derive the following
recursion relations

(n+1)Pyy1(x) +nPi(x) = (2n + 1)z P, (x)

Fr(z) = 22P,(2) + P,y (x) = Pa(x) . (8]

(b) Show that
/1 G?(z,t)dx = 1[11&(1 +t) —In(1—1)].

By expanding the r.h.s. in powers of ¢t and assuming
1
/ dxP,(x)P,(x) =0 for n#m
-1

deduce

—1 2n +1

(c¢) A function f(x) may be expressed as
k=0
Use the result of part (b) to show that

a, = (n+ ;) /_11 drf(z)P,(x)

and
o0

Sz — ') = ikz(% 1) Pu() o) . [5]

(d) Show that G(z,t) implies the following integral representation of P, (z)

_orodt 1
) 2mi vt (1 — 2xt + 2)1/2

Pu(z)

where the closed contour encircles the origin. Specify the singularities of
the integrand for the cases |z| < 1 and |z| > 1 and discuss the restrictions
they impose on the radius of a circular contour. [5]

10



14. lelse 2004 Q

The Laplace transform of a function f(¢) is defined as

= /OO ft)e™®dt , where s>0.
0

Show that 9
L) =—5-Llf),
daf |
L|%] = -+ 1l
and

T(A+ 1)

Al —
L") = g1

where TI'(z) = /Oo u" e du .
0

(b) Consider the differential equation

2 d%y(1) N LAy (D)

_ 2 _
St — (L4 (1) = 0.

Let g(s) denote the Laplace transform of a solution of this equation which
is bounded as t — oo.

Show that g(s) obeys

(s> = 1)g"(s) +3s¢'(s) = 0.

Integrate this equation to obtain

, A
Q(S)ZW,

where A is a constant.

Assuming the inversion integral for Laplace transforms, deduce that

A ds est

H=-= = __°
y(t) t Jo2mi (s2—1)3/27

where you should specify the contour C.

(c) Sketch the analytic structure of the integrand and identify the singularity
that controls the large ¢ behaviour of y(t).

Compute the first two non-zero terms in the large ¢ asymptotic expansion
of y(t).

11

[3]

2]



15.

June 2004 Q3

Consider the Green function G(z,t) in three space dimensions and one time

dimension defined by

Show by Fourier transformation that

G(z

zk.t iwt
k:/dw 5 Wwhere k= |k|.
—m?)

Perform the angular integrations in k-space to obtain
fzwt
G(z,t) @nyr / dk’— / dw where Q= VEk? +m?
)

and r = |z|.

Perform the w integral by contour integration, choosing the contour to give

fzwt :
/ dw = QWSID(Qt) 0(t) ,

where 60(t) is the usual Heaviside step function.

Use the following results (which you are not required to show) for Bessel functions

J07 ']1

1 o ikrSin(Qt) _ 1 2 2 2 2
%/_Oodk‘e q —§J0(m 12 —r )H(t — )

to deduce that

G(z,t) = Lhr\/;l—irzjl (m t2—r2)0(t—7“)—471rr(5(r—t) 0(t) .

Interpret the two terms in G(z,t) identifying the case m =0 .

12

[3]



