
Section 13: Partial Differential Equations

Initially we will be considering PDEs in two dimensions thus the independent variables are x,
y or x, t if we think of one dimension being time. The dependent variable (i.e. the function
that satisfies the PDE) will usually be denoted u and sometimes by ψ (e.g. in quantum
mechanics).

A first order PDE is a relation of the form (where we use the shorthand ux =
∂u

∂x
etc)

F (x, y, u, ux, uy) = 0 .

The equation is linear if F is a linear function of u, ux, uy.

Similarly a second order PDE is a relation of the form

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0

and so on.

In general the solution of a PDE will involve arbitrary functions. This is a key difference
from say an nth order ODE where we have n arbitrary constants of integration. We will show
how to specify these arbritrary functions through the imposition of boundary conditions.

Simple example

Consider the first order linear PDE

a
∂u

∂x
+ b

∂u

∂y
= 0 a, b constant (1)

Let us think about this equation geometrically. Recall that the directional derivative of a
function u in a direction n̂ is

∂u

∂n
= n̂ · ∇u .

Thus the PDE (1) reads that the derivative in the direction parallel to (a, b) is zero i.e. u is
constant along straight lines

bx− ay = constant .

Such curves are known as ‘characteristics’:

The general solution is then u = f(bx − ay) where f(z) is an arbitrary function of one
variable.

Now sketch the characteristics. Consider specifying u(x, 0) as the boundary condition. Since
u is constant along each characteristic we in effect specify the solution everywhere in the
x–y plane. Similarly we could specify the solution everywhere by the boundary condition
u(0, y). Generally an appropriate boundary condition is to specify u along an open curve i.e.
one that a given characteristic does not cross more than once.

Generally Characteristics are

• curves along which partial information about the solution propagates from the bound-
ary curve.

• curves on which one cannot impose arbitrary boundary conditions
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Figure 1: Characteristics for equation 1

Aside: For a general class of first order PDE of the form

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u)

(sometimes known as ‘quasilinear’) the general solution can be obtained by a procedure
known as the ‘Method of Characteristics’.

13. 1. Second order PDEs

Examples from physics:

Equation 2d version

Wave ∇2u− 1

c2
∂2u

∂t2
= 0 uxx −

1

c2
utt = 0

Laplace’s ∇2u = 0 uxx + uyy = 0

Diffusion ∇2u− 1

κ

∂u

∂t
= 0 uxx −

1

κ
ut = 0

S.E. (time dependent) − ih̄
∂ψ

∂t
+
h̄2

2m
∇2ψ + V ψ = 0 ih̄ψt +

h̄2

2m
ψxx + V ψ = 0

S.E. (time independent) ∇2ψ +
2m

h̄2 [E − V ]ψ = 0 ψxx + ψyy +
2m

h̄2 [E − V ]ψ = 0

All these equations are homogeneous. Inhomogeneous versions are also of interest e.g.

Poisson’s equation ∇2u = f(r, t)

We will consider the general class of second order PDE of the form

A(x, y)uxx + 2B(x, y)uxy + C(x, y)uyy = D(x, y, ux, uy) (2)

We now determine the characteristics by trying to impose ‘Cauchy boundary conditions’
along a curve Γ parametrised as x = X(s) and y = Y (s) where s is the arclength. Cauchy

boundary conditions comprise fixing u and
∂u

∂n
(the normal derivative) along Γ. This amounts
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to specifying u and ux, uy. To see this recall that the tangent vector to the curve and the
normal vector to the curve are given by

t̂ = (X ′, Y ′) n̂ = (Y ′,−X ′)

Then
∂u

∂n
= n̂ · ∇u = Y ′ux −X ′uy and

∂u

∂s
= t̂ · ∇u = X ′ux + Y ′uy

Since u is specified along Γ so is ∂u/∂s thus the above two equations yield ux and uy. Thus
Cauchy b.c. also specify ∂ux/∂s and ∂uy/∂s along Γ. Now consider

∂ux

∂s
= t̂ · ∇ux = X ′uxx + Y ′uxy

∂uy

∂s
= t̂ · ∇uy = X ′uxy + Y ′uyy

These along with (2) give three equations for three unknowns uxx, uxy, uyy. The question is
are these consistent i.e. is there a solution? We write the equations in matrix form A 2B C

X ′ Y ′ 0
0 X ′ Y ′

  uxx

uxy

uyy

 =

 D
∂ux/∂s
∂uy/∂s


All the components of the rhs are specified by the boundary data. Thus for a solution we
require that ∣∣∣∣∣∣

A 2B C
X ′ Y ′ 0
0 X ′ Y ′

∣∣∣∣∣∣ 6= 0

The characteristics are deduced from when this condition does not hold i.e. there is no
solution for the second derivatives thus Cauchy boundary conditions along Γ are inconsistent
with the PDE:

AY ′2 − 2BX ′Y ′ + CX ′2 = 0

divide by X ′2 A

(
dY

dX

)2

− 2B

(
dY

dX

)
+ C = 0

⇒ dY

dX
=
B ±

√
B2 − AC

A

this gives the tangent to the characteristics at any point. If A, B, C are constants we get
straight lines.

We classify a PDE (at a given point) according to how many real characteristics there are

classification characteristics

B2 − AC < 0 elliptic two complex

B2 − AC > 0 hyperbolic two real

B2 − AC = 0 parabolic one real

N.B. an equation can be of a different type at different points if A, B, C are functions of
x, y.

62



13. 2. Normal forms

Idea: transform to ‘normal co-ordinates’ i.e. choose new independent variables v(x, y), w(x, y)
so that the coefficient of ∂2/∂v∂w vanishes in (2)

For simplicity consider A,B,C constant so that the transformation is the same at all points.
In this case the transformation is linear and can be expressed in terms of the characteristics
which are given by

α±(x, y) = y − B ±
√
B2 − AC

A
x = constant

Here let us just summarise the results of the transformation.

equation type change of variables new equation

elliptic v =
1

2
(α+ + α−) w = − i

2
(α+ − α−)

∂2u

∂v2
+
∂2u

∂w2
= D̃ ‘Laplace-like’

hyperbolic v =
1

2
(α+ + α−) w =

1

2
(α+ − α−)

∂2u

∂v2
− ∂2u

∂w2
= D̃ ‘wave-like’

parabolic v = α w = x
∂2u

∂w2
= D̃ ‘diffusion-like’

Thus Laplace’s, the Wave and the Diffusion equation are canonical examples i.e. typical of
each class and we shall study them in the next few sections.

13. 3. Boundary conditions

First let us consider the simplest hyperbolic equation: the wave equation

uxx −
1

c2
utt = 0

the characteristics are given by

(
dt

dx

)2

=
1

c2
i.e. α+ = x+ ct = constant and α− = x− ct =

constant: α+ is backwards moving; α− is forwards moving The general solution is

u = f(x− ct) + g(x+ ct) .

Thus if we specify u and ux, uy along some open boundary curve e.g. a portion of the x-axis
this fixes f and g along the curve and in a quadrilateral delineated by the characteristics
starting from the rightmost and left most ends of the boundary curve. Hence the solution
of the equation is determined within this quadrilateral. (You should sketch this in a figure).

Thus for a hyperbolic equation Cauchy boundary conditions along some open curve (not
a characteristic) are the appropriate b.c.s.

For a parabolic equation we have only one family of characteristics and therefore only one
arbitrary function to fix. Therefore we expect that we should specify boundary conditions
along an open curve but we should only specify either u on the curve (Dirichlet b.c.s) or
∂u/∂n (Neumann b.c.s)

For an elliptic equation there are no real characteristics therefore we specify boundary condi-
tions on a closed surface (somehow the information ‘seeps in’ from the boundary conditions)
and use either Dirchlet or Neumann conditions.
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