
Section 11: Eigenfunction Expansion of Green Functions

In this lecture we see how to expand a Green function in terms of eigenfunctions of the
underlying Sturm-Liouville problem. First we review Hermitian matrices

11. 1. Hermitian matrices

Hermitian matrices satisfy Hij = H∗
ji = H†

ij where H† is the Hermitian conjugate of H. You
should recall that Hermitian matrices have real eigenvalues λn such that

H |n〉 = λn |n〉

(where we use ‘bra ket’ notation). |n〉 is the eigenvector and (nondegenerate) eigenvectors
are orthogonal.

We may write 〈n|m〉 = δn,m (orthonormality of eigenvectors) also we have ‘completeness’
which means the eigenvectors span the vector space and we may write

11 =
∑

n

|n〉〈n|

which implies

H = H
∑

n

|n〉〈n| =
∑

n

λn|n〉〈n| .

Thus to solve the equation
H |x〉 = |b〉

we take a scalar product

〈m|H |x〉 =
∑

n

λnδmn 〈n|x〉 = λm 〈m|x〉 = 〈m|b〉

⇒ |x〉 =
∑

n

|n〉 〈n|x〉 =
∑

n

[
|n〉〈n|
λn

]
|b〉 = H−1 |b〉

i.e. we have an expression for H−1 in terms of the eigenvectors of H.

If H has an eigenvalue λ0 = 0 then H−1 doesn’t exist. Nevertheless we can still solve
H |x〉 = |b〉 in the case where 〈0|b〉 = 0. For then λm 〈m|x〉 = 〈m|b〉 still holds ∀m and

|x〉 =
∑
n6=0

|n〉〈n|
λn

|b〉+ A |0〉

where A is an arbitrary constant.

11. 2. Hermitian Operators

We now consider the Sturm-Liouville eigenvalue problem

L(x)u(x) = λu(x)
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with some boundary conditions imposed. An operator L is Hermitian if∫
dx u∗(x)L(x)v(x) =

[∫
dx v∗(x)L(x)u(x)

]∗
c.f Luv = L∗vu = L†uv

In the same way as for Hermitian matrices we can show that Hermitian operators have real
eigenvalues and the eigenfunctions φn(x) are orthogonal

if L(x)φm(x) = λmφm(x)

∫
dx φ∗n(x)L(x)φm(x) = λm

∫
dx φ∗n(x)φm(x)

and L(x)φn(x) = λnφn(x)

∫
dx φ∗m(x)L(x)φn(x) = λn

∫
dx φ∗m(x)φn(x)

since L Hermitian ⇒ (λm − λ∗n)

∫
dx φ∗n(x)φm(x) = 0

⇒ λn are real and

∫
dx φ∗n(x)φm(x) = δnm

Example:
d2 u

dx2
= 0 b.c. u(0) = u(L) = 0

First verify that
d2 u

dx2
is an Hermitian operator:

∫ L

0

u∗
d2v

dx2
dx =

[
u∗
dv

dx

]L

0

−
∫ L

0

dx
du∗

dx

dv

dx
=

[
u∗
dv

dx

]L

0

−
[
du∗

dx
v

]L

0

+

∫ L

0

dx v∗
d2u

dx2

and the boundary conditions ensure that the operator is Hermitian.

In this example the eigenfunctions and eigenvalues are of d2/dx2 obeying the b.c.s are

φn(x) =

(
2

L

)1/2

sin
nπx

L
λn = −

(nπ
L

)2

and form a discrete (i.e. countable) spectrum and that λ is bounded from above but not
below. Note how the b.c.s impose the spectrum.

We can check orthogonality of the eigenfunctions and completeness:

2

L

∫ L

0

dx sin
(πmx

L

)
sin

(πnx
L

)
= δmn for m,n > 0

2

L

∞∑
m=1

sin

(
mπx′

L

)
sin

(mπx
L

)
= δ(x− x′)

11. 3. General Sturm-Liouville problem

Consider the general Sturm Liouville problem

L(x)φn(x) = λnρ(x)φn(x) a ≤ x ≤ b

Bφn(x) = 0 at x = a x = b e.g. B(a) = α+ β
d

dx
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where = L(x) =
d

dx

[
p(x)

d

dx

]
+ q(x). ρ(x) is known as a ‘weight function’.

It is easy to show that L(x) is Hermitian and∫ b

a

ρ(x)φ∗n(x)φm(x)dx = δnm c.f. 〈φn|φm〉 = δnm∑
n

φn(x)ρ(x′)φ∗n(x′) = δ(x− x′) c.f.
∑

n

|φn〉〈φn| = δ(x− x′)

f(x) =
∑

n

Cnφn(x) c.f. |f〉 =
∑

n

Cn |φn〉

Cm =

∫
dxρ(x)φm(x)f(x) c.f. Cm = 〈φm|f〉

The analogy with the bra and ket vectors is to think of the eignfunctions φn(x) as basis
vectors for a vector space. Then we can expand an arbitrary function f in terms of them.

(N.B. The notation differs slightly from quantum mechanics; there |φ〉 is the eigenvector in
Hilbert space of an abstract operator and ψ(x) denotes the wavefunction in position space.
Here our S.L. operators are always written down in position space as are our eigenfunctions.)

Consider the Green function which satisfies

L(x)G(x, x′) = δ(x− x′) BG(x, x′) = 0 at x = a x = b

We expand G(x, x′) =
∑
m

Cm(x′)φm(x)

⇒
∑
m

λmρ(x)φm(x)Cm(x′) = δ(x− x′)

Now multiply by φ∗n(x) and integrate∑
m

λmCm(x′)δmn = φ∗n(x′)

⇒ G(x, x′) =
∑

n

φ∗(x′)φn(x)

λn

This is sometimes known as the bilinear expansion of the Green function and should be
compared to the expression in section 11.1 for H−1 We deduce that the Green function is
basically the inverse of the Sturm Liouville operator.

Example: Green Function for Finite stretched string with periodic forcing

∂2u

∂x2
− 1

c2
∂2u

∂t2
= f(x)e−iω0t b.c. u(0) = u(L) = 0

Here u is the displacement of a stretched string and the rhs gives the external forcing which
here is periodic in time.

We guess the time dependence as u(x, t) = y(x)e−iω0t which leads to

d2y

dx2
+ k2

0y = f(x) where k2
0 ≡

ω2
0

c2
and the b.c.s are y(0) = y(L) = 0 ♦
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This is ODEis the Helmholtz equation and involves a Hermitian operator d2

dx2 + k2
0 for which

the eigenfunctions of the Sturm-Liouville problem ♦ are

φn(x) =

√
2

L
sin(nπx/L) λn = k2

0 −
n2π2

L2

The Green function obeys

d2G(x, x′)

dx2
+ k2

0G = δ(x− x′) G(0, x′) = G(L, x′) = 0

We assume a Fourier sine series solution to this equation i.e. we insert

G =
∞∑

n=1

γn(x′) sin(nπx/L) δ(x− x′) =
∞∑

n=1

2

L
sin(nπx′/L) sin(nπx/L)

Then equating coefficients of sinnπx/L gives

−n
2π2

L2
γn(x′) + k2γn(x′) =

2

L
sin(nπx′/L) ⇒ γn(x′) =

2

L

sin(nπx′/L)

k2 − n2π2/L2

Thus G(x, x′) =
2

L

∞∑
n=1

sin(nπx′/L) sin(nπx′/L)

k2
0 − n2π2/L2

Also note the symmetry of the Green function G(x, x′) = G(x′, x) and that the eigenfunction
expansion fails if k2

0 = n2π2/L2. To understand this latter point, note that λn = 0 implies
that the external forcing (k2

0) coincides with an eigenfrequency of the unforced syste (nπ/L)2.
Thus the system we will have resonance and the oscillations will grow unboundedly (if there
is no dissipation). Compare with the matrix case in 11.1 where there is one eigenvalue zero
but there may still be a solution if the rhs does not overlap with eigenvector 0. In the present
case we may yet have a solution if f(x) has zero overlap with the zero eigenfunction i.e. the
spatial shape of the external forcing does not excite the resonance.

11. 4. Continuous spectrum

The boundary conditions of the problem may allow a continuous spectrum of eigenvalues.

Example: Helmholtz equation on infinite domain

d2y

dx2
+ k2

0y = f(x) y(±∞) bounded

The underlying eigenvalue problem is
d2y

dx2
+ k2

0y = λy where y(±∞) bounded. The

eigenfunctions are y = exp(±ikx) and eigenvalues λ = k2
0 − k2 with k cts.

We construct G by taking the Fourier transform of

d2G(x, x′)

dx2
+ k2

0G(x, x′) = δ(x− x′)

yielding
[
−k2 + k2

0

]
g(k, x′) = e−ikx′

⇒ G(x, x′) =
1

2π

∫ ∞

−∞
g(k, x′)eikxdk =

1

2π

∫ ∞

−∞

eik(x−x′)

k2
0 − k2

dk

This formula is just the generalisation of the sum, in the bilinear expansion for the discrete
case, to an integral.
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