Section 11: Eigenfunction Expansion of Green Functions

In this lecture we see how to expand a Green function in terms of eigenfunctions of the
underlying Sturm-Liouville problem. First we review Hermitian matrices

11. 1. Hermitian matrices

Hermitian matrices satisfy H;; = H; = Hjj where H' is the Hermitian conjugate of H. You
should recall that Hermitian matrices have real eigenvalues )\, such that

Hn) =\, |n)

(where we use ‘bra ket’ notation). |n) is the eigenvector and (nondegenerate) eigenvectors
are orthogonal.

We may write (n|m) = d,» (orthonormality of eigenvectors) also we have ‘completeness’
which means the eigenvectors span the vector space and we may write

L= |n)n]

which implies

H=HY |n){n| =Y Ain)(n|.

Thus to solve the equation
H |z) = |b)

we take a scalar product

(m|H |z) = Z)‘némn (nlz) = A (m|z) = (m|b)

S lo) = Db ole) = 3 (2 g = 01

i.e. we have an expression for ! in terms of the eigenvectors of H.

If H has an eigenvalue \g = 0 then H~! doesn’t exist. Nevertheless we can still solve
H |z) = |b) in the case where (0|b) = 0. For then \,, (m|z) = (m|b) still holds Vm and

) = 3 ) 1 o)

n#0 n

where A is an arbitrary constant.

11. 2. Hermitian Operators

We now consider the Sturm-Liouville eigenvalue problem

L(z)u(z) = \u(z)
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with some boundary conditions imposed. An operator £ is Hermitian if

*

/ do u*(@)L(z)o(x) — [ / dz v*(x)ﬁ(x)u(x)}
cf Ly = L5, =L

In the same way as for Hermitian matrices we can show that Hermitian operators have real
eigenvalues and the eigenfunctions ¢, (z) are orthogonal

it L@on() = Antnle) [ do G@L@ona) = A [ do ()00 (0)
and  L(5)6n(7) = Mn() [z 6@ @) =0 [ do 65, @00, (2)

since £ Hermitian = (Am — A2) /da: () pm(x) =0

= ), are real and /dx G5 () () = Opm

2

d”u
Ezample: o 0 b.c. u(0)=wu(L)=0

2
u
First verify that — is an Hermitian operator:

da?

/Lu*d2vdx— u*dv L_/dedu*dv_ u*dv L_ du*v L+/dev*d2u
o dx? T dw |, 0 de dr dw |, dr |, 0 dx?

and the boundary conditions ensure that the operator is Hermitian.

In this example the eigenfunctions and eigenvalues are of d?/dx? obeying the b.c.s are

2\ /2 . NTT nm\ 2
Onl) = (z) i h=-()

and form a discrete (i.e. countable) spectrum and that A is bounded from above but not
below. Note how the b.c.s impose the spectrum.

We can check orthogonality of the eigenfunctions and completeness:
9 L
z/o dx sin (mzm:) sin <7T—Zx) = Omn for m,n >0

%isin(mle) sin(mzx) = §(x—1')

m=1

11. 3. General Sturm-Liouville problem

Consider the general Sturm Liouville problem

L(2)on(2) = Mp(x)pn(z)  a<z<b
Bop,(z)=0 at z=a xz=0 eg. Ba) ZOH—ﬁ%
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d d
where = L(x) = . {p(x)%] + q(z). p(z) is known as a ‘weight function’.

It is easy to show that L£(x) is Hermitian and

b
/MWWW@Mﬂm et (Guldm) = bum
S (@)@ = bz — o) et S fuln] = bz — o)

flx) =" Cutu() cf. |f) =) Culén)

%z/mmmmm@ et Co = (bulf)

The analogy with the bra and ket vectors is to think of the eignfunctions ¢,(x) as basis
vectors for a vector space. Then we can expand an arbitrary function f in terms of them.

(N.B. The notation differs slightly from quantum mechanics; there |¢) is the eigenvector in
Hilbert space of an abstract operator and 1 (z) denotes the wavefunction in position space.
Here our S.L. operators are always written down in position space as are our eigenfunctions.)

Consider the Green function which satisfies
L(x)G(z,2")=¥b6(x—2") BG(z,2’)=0 at z=a z=0>

We expand G(x,2') = Z Con(2") ()

= Y Al ()Con(a) = (o —
Now multiply by ¢ (z) and integrate

Z Amom(zl)émn = ¢Z($,)
B a2

This is sometimes known as the bilinear expansion of the Green function and should be
compared to the expression in section 11.1 for H~! We deduce that the Green function is
basically the inverse of the Sturm Liouville operator.

Example: Green Function for Finite stretched string with periodic forcing
Pu 1 0%
Jx? ¢ ot?

Here u is the displacement of a stretched string and the rhs gives the external forcing which
here is periodic in time.

= f(z)e ™ot b.c. u(0)=wu(L)=0

We guess the time dependence as u(z,t) = y(x)e “°" which leads to

d? wa
d_xz + Ky = f(x) where k2 = C—S and the b.c.s are y(0)=y(L)=0 <
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This is ODEis the Helmholtz equation and involves a Hermitian operator j—; + k2 for which
the eigenfunctions of the Sturm-Liouville problem <) are

2 . n?m?
oOn(z) = \/;sm(mm/[/) Ap = k3 — T2

The Green function obeys
d*G(z, ")
dx?

We assume a Fourier sine series solution to this equation i.e. we insert

+ kG = (v — ) G(0,2") =G(L,2") =0

G= Z Yo (") sin(nmwx /L) é(x —a') = Z % sin(nrx’/L) sin(nwxz/L)

Then equating coeﬂi(nents of sinnmx/L gives

n27r2 2 2 sin(nma'/L)

2 .
) F R = Fenmr/L) S ) = 7 e

sin( nm;’ /L sin(nma’/L)
Thus  G(z,2') = 7 Z Yy

Also note the symmetry of the Green function G(z,2’) = G(2’, z) and that the eigenfunction
expansion fails if &7 = n?mr%/L?. To understand this latter point, note that A, = 0 implies
that the external forcmg (k2) coincides with an eigenfrequency of the unforced syste (nm/L)%.
Thus the system we will have resonance and the oscillations will grow unboundedly (if there
is no dissipation). Compare with the matrix case in 11.1 where there is one eigenvalue zero
but there may still be a solution if the rhs does not overlap with eigenvector 0. In the present
case we may yet have a solution if f(x) has zero overlap with the zero eigenfunction i.e. the
spatial shape of the external forcing does not excite the resonance.

11. 4. Continuous spectrum

The boundary conditions of the problem may allow a continuous spectrum of eigenvalues.

Ezxample: Helmholtz equation on infinite domain
d*y
e + Ky = f(x) y(£oo) bounded

d2
The underlying eigenvalue problem is d—'Z +kiy = Ay where y(d+o00) bounded. The
x

eigenfunctions are y = exp(+ikx) and eigenvalues A = k2 — k*  with k cts.
We construct G by taking the Fourier transform of
d’G(z,x)
dx?
yielding [k + kg g(k,2") = e~k

+ k3G (z,2) = O(x — )

= G(x,a') o e )
r,x = — €T e = —
’ 27 _Oog ’ 21 J_o kg — k2
This formula is just the generalisation of the sum, in the bilinear expansion for the discrete

case, to an integral.
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