
METHODS OF MATHEMATICAL PHYSICS

Gamma Function; Laplace’s Method Tutorial Sheet 2

K: key question – explores core material
R: review question – an invitation to consolidate
C: challenge question – going beyond the basic framework of the course
S: standard question – general fitness training!

2.1 Generalising the gaussian integral formula [s] Given the formula

∫ ∞
−∞

dx e−ax2/2 =

√
2π

a

show that:

(i) ∫ ∞
−∞

dx e−ikx−ax2/2 =

√
2π

a
e−k2/2a

(Hint: try completing the square, then close a contour in the complex plane)

(ii) ∫ ∞
−∞

dx eiax2/2 =

√
2π

a
eiπ/4

2.2 Use of Gamma function [s] Considering the integral∫
d xe−r2

over the n dimensional unit sphere where x is the n-dimensional position vector and r is
the radial distance. By evaluating the integral in two ways— i) as a product of n one-
dimensional integrals over xi ii) as a one dimensional integral over r— express the surface
area and volume of the n dimensional unit sphere in terms of Gamma functions (N.B. a
circle is 2d sphere, usual sphere is 3d sphere etc)

2.3 Another use of Gamma function [s] Show that

∫ ∞
0

e−sp

ds =
Γ(1/p)

p

2.4 Generalising Laplace’s Method [s] Generalise Laplace’s method to calculate the leading
approximation to the integrals along the real axis of the form

I(x) =
∫ b

a
f(t)exφ(t) dt for x � 0

if the near to the stationary point the expansion of φ is

φ(t) = φ(c) +
1

n!
(t− c)n φ(n)(c) + · · ·

where n is even and φ(n)(c) < 0. You will need to use the result of Q2.3



2.5 Derivation of Euler’s reflection formula [r] Review the derivation of

Γ(z)Γ(1− z) = Γ(1)B(z, 1− z) =
∫ 1

0
dt tz−1(1− t)−z =

∫ ∞
0

dx
xz−1

1 + x

where we changed variables t = x/(1 + x).

Evaluate the final integration by a contour integral to show

Γ(z)Γ(1− z) =
π

sin πz
.

Hint: choose the contour to be the same as Hankel’s contour.

Why is the resulting expression valid for whole complex plane?

2.6 Hypergeometric Function [c] Consider the hypergeometric function defined as

2F1(a, b, c; x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!

where (a)n = a(a + 1)(a + 2) · · · (a + n− 1).

Use the Beta function to verify the integral representation

2F1(a, b, c; x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− tz)−a

2.7 Stirling’s Formula [r] Review the derivation of Stirling’s formula by Laplace’s method

Γ(x + 1) = xx+1
∫ ∞
0

ds exp(x [−s + ln s])

' xx+1e−x
∫ ∞
−∞

ds exp(−xu2/2)

= xx+1/2e−x
√

2π

Now consider calculating the next term in the expansion. Derive the general formula∫ ∞
−∞

du un e−au2/2 =

{
0 if n odd√

2π
a(n+1)/2 (n− 1)(n− 3)(n− 5)....(3)(1) if n even

(1)

Using this formula work out to which order you have to expand −s + ln s to calculate the
first correction to Stirling’s formula and identify the integrals that will contribute.

2.8 Watson’s Lemma [c] Consider

I(x) =
∫ b

0
f(t)e−xtdt b > 0 .

If f(t) has an asymptotic series expansion for t small

f(t) ∼ tα
∞∑

n=0

ant
βn α > −1 β > 0

show that

I(x) ∼
∞∑

n=0

anΓ(α + βn + 1)

xα+βn+1
.
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