METHODS OF MATHEMATICAL PHYSICS

More Green Functions; Laplace Transforms

Tutorial Sheet 7

K: key question – explores core material

R: review question – an invitation to consolidate

C: challenge question – going beyond the basic framework of the course

S: standard question – general fitness training!

7.1 Green function for Bessel's equation [s] Show that the Green function for the problem

$$\mathcal{L}(x)y(x) = \frac{d}{dx} \left\{ x \frac{dy}{dx} \right\} + \left\{ k^2 x - \frac{n^2}{x} \right\} y = f(x) \quad \text{for} \quad 0 < x < a$$

such that y(0) is bounded and y(a) = 0, is

$$G(x, x') = \frac{\pi}{2} \{ J_n(ka) N_n(kx') - N_n(ka) J_n(kx') \} \frac{J_n(kx)}{J_n(ka)},$$

for 0 < x < x', provided $J_n(ka) \neq 0$.

Obtain the Green function for the region x' < x < a

[The LI independent solutions of $\mathcal{L}(x)y(x) = 0$ are $J_n(kx)$ and $N_n(kx)$, the Bessel and Neumann functions of order n. $J_n(z)$ is bounded as $z \to 0$ and $N_n(z)$ diverges as $z \to 0$ and their Wronskian is $2/\pi z$]

7.2 Hermiticity [k]

In order that Sturm Liouville differential operator

$$\mathcal{L}(x) = \frac{d}{dx} \left\{ p(x) \frac{d}{dx} \right\} + q(x)$$

be Hermitian i.e $\int dx u^* \mathcal{L} v = \left[\int dx v^* \mathcal{L} u \right]^*$

what are the boundary conditions that must be imposed on u, v?

7.3 Bilinear form of Green Function [r]

Show that the Green function for the problem

$$y''(x) + \omega^2 y(x) = f(x)$$
 for $0 < x < L$; $y(0) = y(L) = 0$

is

$$G(x,x') = -\frac{\sin\omega x \sin\omega (L-x')}{\omega \sin\omega L} \theta(x'-x) - \frac{\sin\omega x' \sin\omega (L-x)}{\omega \sin\omega L} \theta(x-x') .$$

Find also a bilnear form for this Green function, by expanding in terms of the eigenfunctions of the above differential equation (with f(x) = 0) and boundary conditions.

** Verify that the two forms of the Green function are equivalent

7.4 **Symmetry of Green function** [c] Show that the Green function for an Hermitian differential operator \mathcal{L} satisfies the symmetry relation

$$G(x, x') = [G(x', x)]^*$$

7.5 **[k]** (a) Given that F(s) is the Laplace transform of f(t), such that

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt,$$

verify the following basic Laplace transform properties:-

(i)
$$\mathcal{L}[e^{\alpha t}f(t)] = F(s-\alpha);$$
 (ii) $\mathcal{L}[f(t-\alpha)\theta(t-\alpha)] = e^{-\alpha s}F(s);$
(...) $\mathcal{L}[f(t-\alpha)\theta(t-\alpha)] = e^{-\alpha s}F(s);$

(iii)
$$\mathcal{L}[f(at)] = \frac{1}{a}F(\frac{s}{a});$$
 (iv) $\mathcal{L}[t^n f(t)] = (-\frac{a}{ds})^n F(s).$

(b) Given that the Laplace transform of $\cos t$ is $s/(s^2+1)$, find using the above results the Laplace transforms of

(i)
$$\cos \omega (t - t_0) \theta (t - t_0);$$
 (ii) $e^{-\kappa t} \cos \omega t;$ (iii) $t \cos \omega t$.

7.6 (i) Given that $\mathcal{L}[\sin \omega t] = \omega/(s^2 + \omega^2)$, use the convolution theorem to find $\mathcal{L}^{-1}[(s^2 + \omega^2)^{-2}]$. (ii) Given that $\mathcal{L}[(\pi t)^{-1/2}] = s^{-1/2}$, use the convolution theorem to show that

$$\mathcal{L}^{-1}[1/s\sqrt{s+1}] = \operatorname{erf}(\sqrt{t}),$$

where $\operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_0^x du e^{-u^2}$.

7.7 Use the Bromwich inversion formula and the residue theorem to obtain the inverse Laplace transforms of the following functions:

(i)
$$s(s^2 + a^2)^{-1}(s^2 + b^2)^{-1}$$
, (ii) $(s^2 + \omega^2)^{-2}$, (iii) $e^{-bs}/(s-a)^n$,
(iv)* $s^{-1/2}$; (v)** $(s \cosh s)^{-1} = 2s^{-1} \sum_{0}^{\infty} (-)^n e^{-(2n+1)s}$.

In the last part you can compare the results obtained by inverting both the given expressions to show that $\sum_{0}^{\infty} \frac{(-)^n}{2n+1} = \frac{\pi}{4}$.

7.8 If f(t) is periodic, such that f(t+T) = f(t), show that its Laplace transform is

$$F(s) = \left(1 - e^{-sT}\right)^{-1} \int_0^T e^{-st} f(t) dt \, .$$

Find F(s) if $f(t) = |\sin \omega t|$, the output of a full-wave rectifier.

7.9 Use the Laplace transform to solve the following initial value problems:

i)
$$\ddot{x} - x = t$$
, $x(0) = \dot{x}(0) = 0$,

(

- (ii)* $\ddot{x} + \omega^2 x + \alpha^2 (x y) = 0,$ $\ddot{y} + \omega^2 y + \alpha^2 (y - x) = 0,$ $x(0) = y(0) = \dot{y}(0) = 0,$ $\dot{x}(0) = u.$
- (iii) x''' + x'' + x' + x + 1 = 0,x(0) = x'(0) = x''(0) = 0.

(iv)**
$$\underline{\ddot{r}} + \underline{k} \times \underline{r} = 0,$$

 $\underline{r}(0) = \underline{a}, \qquad \underline{\dot{r}}(0) = 0,$ where \underline{k} is a constant unit vector.