
EM 3 Section 11: Inductance

11. 1. Examples of Induction

As we saw last lecture an emf can be induced by changing the area of a current loop in a
magnetic field or moving a current loop into or out of a magnetic field.

Here we consider some common examples of rotation of a current loop about its axis in a
uniform magnetic field.

AC generator

A generator has a coil of area A rotating about its diameter in a uniform magnetic field with
angular velocity ω: In this case it is only the angle between the field and the loop that is

Figure 1: AC generator

varying:
ΦB = AB cosωt (1)

E = −dΦB

dt
= −ABω sinωt (2)

This system generates an alternating current (AC) with frequency ω. The current is π/2 out
of phase with the rotation, so the peak current is obtained when the flux is zero, i.e. when the
loop is parallel to the magnetic field. There is zero current when the loop is perpendicular
to the field.

Rotating disc of charge

An insulating disc with a uniform surface charge rotates around its axis. There is a uniform
magnetic field parallel to the axis of the disc.

The force on an element of charge, q, on the disc at radius, r, is:

dF = qvBer = qrωBer (3)

where er is the radial basis vector on the disc. This magnetic force is equivalent to a radial
electric field:

E ′ = F/q = rωBer (4)
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and there is an induced emf between the centre and outer radius of the disc:

E =
∫
E ′ · dr =

ωBa2

2
(5)

This emf acts outwards to try and move the charge to the outside of the disc. If the disc
were a conductor this would actually happen.

So what happens to the flux rule for this type of problem? Basically it is not clear if there is
any current loop to consider a flux through. Thus, as it stands, the flux rule E = −dΦB/dt
only works when there is a fixed current loop.

11. 2. Mutual Inductance

Consider two current loops I1,I2 at rest. The current I1 will lead to a magnetic field B1

which will lead to a magnetic flux through loop 2

Φ2 =
∫
B1 · dS2 ≡M21I1 (6)

M21 is the mutual inductance of the two loops; it relates the flux through loop 2 to the
current in loop 1.

Now let us use the vector potential and Stokes’ theorem to obtain an explicit form for M12

Φ2 =
∫

(∇× A1) · dS2 =
∮
2
A1 · dl2

=
µ0I1
4π

∮
1

∮
2

dl1 · dl2
|r1 − r2|

where we have used the formula for the vector potential from section 9 equation (10). Thus

M12 =
µ0

4π

∮
1

∮
2

dl1 · dl2
|r1 − r2|

(7)

where the integrals are taken round both current loops. This is known as the Neumann
formula but it is not very useful for most practical applications. What it does reveal is that

M12 = M21 = M (8)

which is a remarkable result i.e the flux through 1 when there is current I in 2 is the same
as the flux through 2 when there is current I in 1 whatever the geometry of the loops!
The relative geometry of the two conductors enters through M which is a purely geometric
quantity (a double integral around the loops)

Now let us introduce time dependence and vary the currentI1 in 1. The changing flux through
2 then gives rise to an emf

E = −dΦ2

dt
= −M dI1

dt

By Lenz’s law this emf opposes the change in current.
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11. 3. Self-Inductance

The above discussion similarly applies to the source loop itself i.e. a changing current in a
loop induces a “back emf” which opposes the change in current.

The self-inductance of the loop, L, is defined as the ratio of the induced emf to the current
change:

E = −L
dI

dt
(9)

It can also be written as:

ΦB = LI (10)

The unit of inductance is the Henry (H), which is 1 Vs/A.

Inductance of a Solenoid

For a long solenoid (length l, radius a, with n loops per unit length) there is a uniform
magnetic field along the axis of the solenoid:

Bz = µ0nI (11)

This result can be shown using Ampère’s Law (see tutorial 5.1).

The flux through all nl loops is:

ΦB =
∫

A
B · dS = µ0nIπa2nl

and the self-inductance of the solenoid is:

L = µ0n
2πa2l = µ0n

2V (12)

11. 4. Energy Stored in Inductors

The work done to create a current in a loop against the induced emf is related to the self-
inductance L:

dUM

dt
= −EI = LI

dI

dt

Integrating this with respect to time gives:

UM =
1

2
LI2 (13)

For two coils with a mutual inductance:

UM =
1

2
L1I1

2 +
1

2
L2I2

2 +M12I1I2

Example of solenoid For a long solenoid the self inductance and magnetic field are:

L = µ0n
2πa2l B = µ0nIez inside solenoid

3



The energy stored in the solenoid is:

UM =
1

2
µ0n

2I2πa2l =
1

2µ0

|B|2πa2l

This can be written in terms of the energy density associated with the magnetic field:

uM =
|B|2

2µ0

Note that this treatment of the energy density of a magnetic field in an inductor is very
similar to the treatment of the energy density of an electric field in a capacitor.

We can write the result (13) in a form that uses the magnetic vector potential and the
current density. As before the flux is given by

ΦB =
∫

(∇× A) · dS =
∮
A · dl

Thus using the definition of L

LI =
∮
A · dl

and we find for a current loop that

UM =
I

2

∮
A · dl =

1

2

∮
A · Idl

The generalisation to volume currents is

UM =
1

2

∫
A · J dV (14)

We can develop (14) further by using Ampère’s law and a product rule from lecture 1

µ0A · J = A · (∇×B)

= B · (∇× A)−∇ · (A×B)

= B ·B −∇ · (A×B)

Consequently

UM =
1

2µ0

[∫
B2dV −

∫
∇ · (A×B) dV

]
=

1

2µ0

[∫
B2dV −

∮
S
(A×B) · dS

]
The second integral is a boundary term which vanishes when we take the volume over all
space and assumes B vanishes at ∞, therefore

UM =
1

2µ0

∫
allspace

|B|2dV (15)

In a similar way to the electrostatic energy UE, we can think of the magnetic energy be-
ing stored either in the (localised) current distribution (14) or throughout all space in the
magnetic field (15).
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