
EM 3 Section 13: Description of Electromagnetic Waves

13. 1. Recap of wave equations

Let us recall (see Mathematics for Physics 4 and Physics 2A) the wave equation in 1d (i.e.
one spatial dimension x and one time dimension t) for a scalar field u

∂2u

∂x2
=

1

c2
∂2u

∂t2
(1)

Now, as can readily be checked by substitution into (1), the general solution is any function
f of the form

u(x, t) = f(kx− ωt) (2)

where the wave velocity c is given by

c =
w

k
(3)

A convenient solution of special interest is

f = A exp i(kx− ωt) = A cos(kx− ωt) + iA sin(kx− ωt) (4)

These are sinusoidal waves and A is the constant amplitude (which may be complex) N.B.
the real (cosine) and imaginary (sine) parts are independent solutions. Moreover it is a
monochromatic wave since there is a single angular frequency ω. These are the basis of
Fourier methods where we build up waves of arbitrary shape by superposition of sines and
cosines

If (for physical reasons) we want to get a real solution from (4) we simply take the real part

u(x, t) = Re [A exp i(kx− ωt)]
= ReA cos(kx− ωt)− ImA sin(kx− ωt) (5)

Important things to remember are : k is the wavenumber; the angular frequency is ω = 2πν
where ν is the frequency; the wavelength is λ = 2π/k; the whole wave proceeds to the right
with speed c, but at any fixed x the wave oscillates with period T = 2π/ω = 2π/kc.

The 1d equation (1) generalises easily to 3d

∇2u =
1

c2
∂2u

∂t2
(6)

where the second derivative w.r.t. x has been replaced by the Laplacian operator.

The solution (2) generalises to

u(r, t) = f(k · r − ωt) (7)

where the wavevector k = (kx, ky, kz) and the velocity is again

c =
w

k
(8)
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where k = |k|. We can also write (7) as

u(r, t) = g(n̂ · r − ct) (9)

where n̂ is the unit vector in the direction of k.

13. 2. Plane Waves

The generalisation of the 1d sinusoidal solution (4) is to the 3d plane wave solution

u(r, t) = A exp i(k · r − ωt) (10)

The is called a plane wave because it takes the same (complex) value whenever

k · r = ωt+ constant (11)

which at any fixed t is the equation of a plane with normal in the k direction.

To see that (10) is a solution to (12) note that

∇ exp ik · r =

[
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂x

]
exp i(kxx+ kyy + kzz)

= ik exp ik · r

and

∇2 exp ik · r = ∇ · ∇ exp ik · r = i∇ · (k exp ik · r) = ik · ∇ exp ik · r = −k2 exp ik · r

where we used the product identity ∇ · (kf) = f∇ · k + k · ∇f = k · ∇f since k is constant.

Also
∂2 exp i(k · r − ωt)

∂t2
= −ω2 exp i(k · r − ωt)

Finally we can generalise to the 3d wave equation for a vector field F

∇2F =
1

c2
∂2F

∂t2
(12)

for which a plane wave solution is

F = F 0 exp i(k · r − ωt) (13)

where F 0 is a constant (complex) vector. The key things to remember with this plane wave
solution are

∇ · F = ik · F (14)

∇× F = ik × F (15)

∇2F = −k2F (16)
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13. 3. Electromagnetic Plane Waves

Previously we saw that in vacuo Maxwell’s equations with ρ = 0, J = 0 read

∇ · E = 0 (17)

∇ ·B = 0 (18)

∇× E = −∂B
∂t

(19)

∇×B = µ0ε0
∂E

∂t
(20)

and reduce to the decoupled wave equations

∇2E = ε0µ0
∂2E

∂t2
(21)

∇2B = ε0µ0
∂2B

∂t2
(22)

Clearly we have plane solutions

E = E0 exp i(k · r − ωt) B = B0 exp i(k · r − ωt) (23)

moving at the speed of light c = ω/k =
1

√
ε0µ0

. However Maxwell’s equations imply more

constraints on our plane wave solutions. First MI, MII (17,18) imply

ik · E0 = 0 ik ·B0 = 0

i.e. E0 and B0 and hence E and B are perpendicular to the direction of propagation k. That
is, the wave is transverse.

It is conventional to take the direction of propagation k in the ez direction;

k = kez (24)

therefore E0 and B0 lie in the x–y plane. Substituting (23) in MIII we find

ik × E0 exp i(k · r − ωt) = iωB0 exp i(k · r − ωt)

or more compactly

B0 =
k

ω
(ez × E0) (25)

Now since ez and E0 are orthogonal we can take magnitudes

|B0| =
k

ω
|E0| (26)

Now we should choose the directions of B0 and E0. (25) tells us that the magnetic field is
perpendicular to the electric field, and both are perpendicular to the direction
of propagation of the wave.

Polarisation states can be defined in various ways:
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• Linearly (or plane) polarized - direction of E is fixed. There are two orthogonal plane
polarisation states with E in x or y direction.

• Circularly polarized - direction of E rotates clockwise or anticlockwise around the z
axis in the x–y plane.

An unpolarised electromagnetic wave is a random mixture of polarisation. So E has a
random directions as a function of z.

13. 4. Linear (Plane) Polarisation

Let us first consider the case where B0 and E0 are real. Then, since they lie in the x–y
plane it is conventional to take E0 = E0ex and B0 = B0ey. This is referred to as linear
polarisation in the x direction i.e. the electric field is always in the x direction and magnetic
field is always in the y direction and k is in the z direction as usual. Polarisation in the y
direction would have E0 = E0ey, B0 = −B0ex. More generally we can take E0 = E0n̂

Figure 1: Plane polarisation in x direction (Griffiths fig 9.10)

E0 · ex = E0n̂ · ex = E0 cos θ

where n̂ is the polarisation vector and θ is the polarisation angle.

13. 5. Circular Polarisation

Now consider taking E0 as a complex vector

E0 =
E0√

2
(ex ± iey)eiφ (27)

Then we find that the real part of E is given by

ReE =
E0√

2

[
ex cos(k · r − ωt+ φ)∓ ey sin(k · r − ωt+ φ)

]
(28)

The minus sign in (27) implies that the polarisation vector rotates anticlockwise about the
ez : i.e. at time ωt = k ·r+φ, ReE is in the ex direction but as time increases the polarisation
vector rotates towards −ey. This also referred to left circular polarisation or positive helicity

Likewise the plus sign in (27) implies that the polarisation vector rotates clockwise about
the ez This is referred to as right circular polarisation or negative helicity.
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