
EM 3 Section 15: Dielectric Materials

15. 1. Overview

So far we have developed Maxwell’s equations and they offer a complete and general de-
scription of electrodynamics. However the input we have to make is to define the charge and
current densities ρ and J with microscopic precision. In the real world (i.e. not in vacuo)
this would be a huge task as materials are made up of atoms/molecules which all contain
charge distributions and currents (through electronic orbits). This is the atomic level of
description.

Instead we want to develop a macroscopic description of materials in terms of smoothly
varying quantities which are averaged in some way: these turn out to be the density ρf

and current Jf of free charges. The bound charges which are bound up in the atomic
structure are dealt with by defining new fields D the Electric Displacement Field and
H the Auxiliary (magnetic) Field. Then we end up with a complementary macroscopic
form of Maxwell’s equations which is a nice example of an effective theory coming from
the microscopic theory. Although it may seem annoying to have to learn a second set of
Maxwell’s equations, they are in some ways simpler than the microscopic ones.

15. 2. Dielectric Materials

Roughly speaking we can classify materials as conductors or dielectrics (insulators). A
perfect conductor will have an ‘unlimited’ supply of free charges whereas at the other ex-
treme a perfect dielectric will have no free charges and instead all charges are bound up in
atoms/molecules.

Figure 1: Polarization of Dipoles in a Dielectric

Let us consider the effect of an electric field on a dielectric. The field will induce a dipole
moment in two ways

• the charge distribution of some atoms/molecules is distorted

• already polar molecules (e.g. H2O) will tend to align with the external field (rotation)
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These effects polarize the material and result in an induced dipole moment for each atom

〈p
atom
〉 = αE (1)

where α is the atomic polarizability. We take an average in (1) as an atom’s dipole moment
will not be constant due to thermal fluctuations. All these atomic dipole moments give rise
to the dipole moment per unit volume P or Polarization. We define the polarization field
P through the net dipole moment dp in a small volume dV

dp = P dV (2)

thus P is dipole moment per unit volume. We can relate it to the atomic dipole moment
〈p

atom
〉 through

P = n〈p
atom
〉

where n is the number of atoms per unit volume.

Let us now consider the field due to the polarized molecules. Recall that for a single dipole
at r′ the potential at r is

V (r) =
1

4πε0

(r − r′) · p
|r − r′|3

This generalises by superposition to the potential due to the Polarization field P (r′)

V (r) =
1

4πε0

∫
V

(r − r′) · P (r′)

|r − r′|3
dV ′

We now note a usual identity but this time for the gradient wrt the primed coordinates

∇′
(

1

|r − r′|

)
=

(r − r′)

|r − r′|3

Then we perform ‘integration by parts’ using the divergence theorem

V (r) =
1

4πε0

∫
V
P (r′) · ∇′

(
1

|r − r′|

)
dV ′

=
1

4πε0

[∫
V
∇′ ·

(
P

|r − r′|

)
dV ′ −

∫
V

1

|r − r′|
∇′ · PdV ′

]

=
1

4πε0

∮
S

P · dS ′

|r − r′|
− 1

4πε0

∫
V

1

|r − r′|
(∇′ · P ) dV ′

Now the first term on the right hand side is equivalent to the potential due to a surface
charge distribution on S i.e. P · dS → σbdS or

σb = P · n̂ (3)

where n̂ is normal to the surface. The second term on the lhs is equivalent to the potential
due to a volume charge distribution ρb which is given by

ρb = −∇ · P (4)
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The subscript b refers to the fact the charges are bound (to the atoms)

15. 3. Electric displacement vector and Gauss’ law in media

We are now in a position to develop Gauss’ law in the case of media. The key idea is to
divide up the charge distribution into bound and free charges

ρ = ρb + ρf

Then Gauss’s law (MI) becomes

∇ · E =
ρf

ε0
+
ρb

ε0
=
ρf

ε0
− ∇ · P

ε0

or
∇ · (ε0E + P ) = ρf (5)

Now let us define the Electric displacement as

D ≡ ε0E + P (6)

Gauss’ law in media then becomes

∇ ·D = ρf (7)

15. 4. Linear Isotropic Homogeneous Media

So far, so good, but at the expense of the introduction of a new field D in addition to E.
However things become simpler when we consider an ideal type of medium which is linear,
isotropic and homogeneous (LIH).

Isotropic means there is no preferred direction which implies through symmetry that P is
‖ to E. Linear means that the applied E field results in a generally small polarization of
molecules through distortion and rotation, and we expect a linear response to the field

P = χEε0E (8)

χE (chi) is the susceptibility—large χE means a large response to the applied field and the
medium is easier to polarize.

Homogeneous means the medium has the same properties at all points in space so that χE

has no spatial dependence.

Using (8) results in
D = ε0E + P = ε0(1 + χE)E

or D = ε0εrE (9)

where εr = 1 + χE is the relative permittivity (or dielectric constant) of the medium and is
a dimensionless constant = 1 for vacuum; for most insulators εr = 1.05− 1.3. Some crystals
have high εr, e.g. mica: er = 7. For dipolar fluids, e.g. deionized water: εr = 80.
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The important point is: for LIH we have a linear constitutive relation (9) between E and D.

15. 5. Example: Dielectrics in Capacitors

The space between the two plates of a capacitor can be filled with an insulating material
rather than with a vacuum. There are induced polarization (bound) charges on the surfaces
next to the plates. These change the capacitance in a way that depends on the geometry
of the insulator and the plates. For a parallel plate capacitor: the electric field is simply

Figure 2: Parallel plate capacitor with dielectric

the superposition of the field from the free charges on the plates and bound charges at the
surface of the dielectric

E = E0 + EP =
1

ε0
(σf − σb)n̂ (10)

where n̂ is normal to the plates. The electric field E as a function of the free charge density
on the plates σf is reduced by the polarization of the dielectric between the plates. N.B. the
total free charge on a plate is still Q = Aσf . Also the electric displacement turns out to be
simply

D = σf n̂

this can be checked by the modified version of Gauss’s Law which gives∮
S
D · dS =

∫
V
ρf dV = (Qf )enc (11)

Taking a Gaussian pillbox area a straddling a plate one finds that a|D| = aσf

The parallel plate capacitance is given in terms of the potential difference Vd, which remains

Vd = −
∫ 2

1
E · dl

When we integrate along the normal from plate 1 to plate 2

Vd = Ed =
Dd

ε0εr

and

C =
Q

Ed
=
Aσf

Ed
=
AD

Ed
=
Aεrε0
d

= εrC0 (12)

where C0 is the capacitance without the dielectric present. For any geometry of capacitor
there is an increase in the capacitance due to the presence of a dielectric between the plates.
Note that it is not necessarily by just a factor εr — see tutorial.
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