
EM 3 Section 16: Magnetic Media

16. 1. Magnetic Materials

When an external magnetic field is applied to a material it produces a magnetization of
the atoms of the material. There are several different types of magnetization:

• Diamagnetism - the orbital angular momentum of the atomic electrons is increased
slightly due to electromagnetic induction.
This magnetization is opposite to the external magnetic field.

• Paramagnetism - if the atoms of a material have intrinsic magnetic moments, they
align with the applied field, due to U = −m ·B.
This magnetization is parallel to the external magnetic field.

• Ferromagnetism - in a few materials the intrinsic magnetic moments of the atoms matom

spontaneously align due to mutual interactions of a quantum nature called ‘exchange
interactions’. They form domains with moments matom all in the same direction. This
magnetization can form permanent magnets.

16. 2. The Magnetization Vector

In analogy with the polarization vector for dielectrics the magnetization vector, M , is the
key macroscopic field for magnetic media.

The infinitesimal magnet (equivalent to small current loop) in volume dV is given by the
magnetic dipole moment per unit volume:

dm = MdV (1)

The unit of magnetization M is Am−1.

Figure 1: Magnetization loops

An array of small magnetic dipoles can be thought of as producing macroscopic current loops
on the surface of the material. These currents circulate round the direction of M , with a
surface magnetization current density j

M
(see figure).
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Similarly, spatial variation of the magnetization can be expected to produce a bulk magne-
tization current.

To quantify these effects let us calculate the field of a magnetised object. Recall that the
magnetic vector potential at r of a magnetic dipole at r′ is

A(r) =
µ0

4π

m× (r − r′)
|r − r′|3

(2)

This generalises, when we replace m by MdV ′ and integrate the magnetization over some
volume V , to

A(r) =
µ0

4π

∫
V

M × (r − r′)
|r − r′|3

dV ′ (3)

Now we recall that
(r − r′)
|r − r′|3

= ∇′ 1

|r − r′|
(4)

and use the product rule

∇′ ×
(
M(r′)

|r − r′|

)
=

1

|r − r′|
∇′ ×M(r′) +∇′

(
1

|r − r′|

)
×M(r′)

to obtain

A(r) =
µ0

4π

∫
V

[
1

|r − r′|
∇′ ×M(r′)−∇′ ×

(
M

|r − r′|

)]
dV ′

We can rewrite the second integral as a surface integral (see tutorial sheet 9) to obtain

A(r) =
µ0

4π

∫
V

1

|r − r′|
∇′ ×M(r′)dV ′ +

µ0

4π

∮
S

1

|r − r′|
M(r′)× dS ′ (5)

Now, the first term on the right hand side is equivalent to the potential due to a volume
current in V

JM = ∇×M (6)

and the second term is equivalent to the potential due to a surface current on S (normal n̂)

j
M

= M × n̂ (7)

We use the subscript M to indicate that these are effective magnetization currents resulting
from the superposition of microscopic current loops. The volume currents (6) come from
how the magnetization curls about a point—a spatial variation in the magnetization field.
The surface current (7) occurs even for constant magnetization.

Example: Bar magnet “A cylindrical bar magnet has uniform magnetization M along its
axis. To what current distribution is this equivalent?”

Now M is uniform so ∇×M = 0 and no bulk JM

Surface current density j
mag

= M × n̂ = Mez × eρ = Meφ has magnitude M and is

‘solenoidal’, i.e. resembling a solenoid with current flowing circumferentially
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Example: Toroidal magnet “A long cylindrical bar magnet of uniform M is bent into a
loop. What is the equivalent current distribution?”

Curl in cylindrical polars (ρ, φ, z) reads:

∇×M =

[
1

ρ

∂Mz

∂φ
− ∂Mφ

∂z

]
eρ +

[
∂Mρ

∂z
− ∂Mz

∂ρ

]
eφ

+
1

ρ

[
∂

∂ρ
(ρMφ)− ∂Mρ

∂φ

]
ez

Direction of M is circumferential M = Meφ. In the curl formula, the only survivor is

∇×M =
1

ρ

∂

∂ρ
(ρM)ez =

M

ρ
ez

Alongside the solenoidal (circumferential around the toroid) jmag = M on surface, we now
have bulk magnetization current N.B. The surface current j

mag
= M × n̂ has constant

Figure 2: Magnetization currents in bar magnet and toroidal magnet

magnitude: larger net current on outer than inner surface. The bulk current JM makes up
the difference

16. 3. Modification to Ampere’s Law

The Ampère-Maxwell law still holds for the full current density J

∇×B = µ0

(
J + ε0

∂E

∂t

)

The key idea is to divide this into three contributions J = Jf + JM + JP

Jf , current of free charges i.e. the conduction current

JM = ∇×M , magnetization current we have just met

JP = polarization current — this new term comes from electric dipoles moving around

To find JP we use the (definition) ρP = −∇ · P and the continuity equation

ρ̇P = −∇ · JP
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from whicn we deduce
JP =

∂P

∂t
(8)

We would like Ampère-Maxwell in terms of Jf only:

∇×B = µ0

(
Jf + JM + JP + ε0

∂E

∂t

)

= µ0

(
Jf +∇×M +

∂P

∂t
+ ε0

∂E

∂t

)

= µ0

(
Jf +∇×M +

∂D

∂t

)
where we have used the definition of D. Now shift ∇×M onto left, divide by µ0:

∇×
(
B

µ0

−M
)

= Jf +
∂D

∂t

We define

H =
B

µ0

−M (9)

then

∇×H = Jf +
∂D

∂t
(10)

which is Ampère-Maxwell law in media. The Integral form of Ampère-Maxwell reads∮
C
H · dl =

∫
S
(Jf + ∂D/∂t) · dS

where C is a closed circuit bounding S

We run into difficulties in terminology for B, H. It is actually simplest and easiest to call
them ‘magnetic field B’ (units Tesla) and ‘magnetic field H’ in units of Am−1. But be
warned in some texts B is the ‘magnetic field’ and H is the ‘auxiliary field’; in others B is
the ‘magnetic flux density’ and H is the ‘magnetic field strength’ (which is really confusing!)

Since MII and MIII do not need to be modified as they contain no J or ρ, we now basically
have all the macroscopic Maxwell’s equations which hold in media. See next lecture for
summary

The magnetic susceptibility χM describes the relationship between magnetization and
applied field, by relating M to H. We will assume again an LIH medium (linear, isotropic,
homogeneous). Then the relation may be written

M = χMH (11)

Warning—some books, e.g. Grant & Phillips, use χBB = µ0M

The equivalent of the dielectric constant is known as the relative permeability of a mate-
rial, µr:

B = µrµ0H (12)

where (µr − 1) = χM . The limit of no magnetization is χM = 0 and µr = 1.

In contrast to dielectrics, the magnetic susceptibility χM can be either positive or negative,
and µr < 1 or µr > 1.
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