EM 3 Section 16: Magnetic Media

16. 1. Magnetic Materials

When an external magnetic field is applied to a material it produces a **magnetization** of the atoms of the material. There are several different types of magnetization:

- Diamagnetism the orbital angular momentum of the atomic electrons is increased slightly due to electromagnetic induction. This magnetization is *opposite* to the external magnetic field.
- Paramagnetism if the atoms of a material have intrinsic magnetic moments, they align with the applied field, due to $U = -\underline{m} \cdot \underline{B}$. This magnetization is *parallel* to the external magnetic field.
- Ferromagnetism in a few materials the intrinsic magnetic moments of the atoms \underline{m}_{atom} spontaneously align due to mutual interactions of a quantum nature called 'exchange interactions'. They form *domains* with moments \underline{m}_{atom} all in the same direction. This magnetization can form *permanent magnets*.

16. 2. The Magnetization Vector

In analogy with the polarization vector for dielectrics the **magnetization vector**, \underline{M} , is the key macroscopic field for magnetic media.

The infinitesimal magnet (equivalent to small current loop) in volume dV is given by the magnetic dipole moment per unit volume:

$$\mathrm{d}\underline{m} = \underline{M}\mathrm{d}V \tag{1}$$

The unit of magnetization \underline{M} is Am^{-1} .

Figure 1: Magnetization loops

An array of small magnetic dipoles can be thought of as producing macroscopic current loops on the surface of the material. These currents circulate round the direction of \underline{M} , with a surface magnetization current density \underline{j}_{M} (see figure). Similarly, spatial variation of the magnetization can be expected to produce a bulk magnetization current.

To quantify these effects let us calculate the field of a magnetised object. Recall that the magnetic vector potential at \underline{r} of a magnetic dipole at \underline{r}' is

$$\underline{A}(\underline{r}) = \frac{\mu_0}{4\pi} \frac{\underline{m} \times (\underline{r} - \underline{r}')}{|\underline{r} - \underline{r}'|^3}$$
(2)

This generalises, when we replace \underline{m} by $\underline{M} dV'$ and integrate the magnetization over some volume V, to

$$\underline{A}(\underline{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\underline{M} \times (\underline{r} - \underline{r}')}{|\underline{r} - \underline{r}'|^3} \,\mathrm{d}V' \tag{3}$$

Now we recall that

$$\frac{(\underline{r}-\underline{r}')}{|\underline{r}-\underline{r}'|^3} = \underline{\nabla}' \frac{1}{|\underline{r}-\underline{r}'|} \tag{4}$$

and use the product rule

$$\underline{\nabla}' \times \left(\frac{\underline{M}(\underline{r}')}{|\underline{r} - \underline{r}'|}\right) = \frac{1}{|\underline{r} - \underline{r}'|} \underline{\nabla}' \times \underline{M}(\underline{r}') + \underline{\nabla}' \left(\frac{1}{|\underline{r} - \underline{r}'|}\right) \times \underline{M}(\underline{r}')$$

to obtain

$$\underline{A}(\underline{r}) = \frac{\mu_0}{4\pi} \int_V \left[\frac{1}{|\underline{r} - \underline{r}'|} \underline{\nabla}' \times \underline{M}(\underline{r}') - \underline{\nabla}' \times \left(\frac{\underline{M}}{|\underline{r} - \underline{r}'|} \right) \right] \mathrm{d}V'$$

We can rewrite the second integral as a surface integral (see tutorial sheet 9) to obtain

$$\underline{A}(\underline{r}) = \frac{\mu_0}{4\pi} \int_V \frac{1}{|\underline{r} - \underline{r}'|} \underline{\nabla}' \times \underline{M}(\underline{r}') \mathrm{d}V' + \frac{\mu_0}{4\pi} \oint_S \frac{1}{|\underline{r} - \underline{r}'|} \underline{M}(\underline{r}') \times \underline{\mathrm{d}S'}$$
(5)

Now, the first term on the right hand side is equivalent to the potential due to a *volume* current in V

$$\underline{J}_M = \underline{\nabla} \times \underline{M} \tag{6}$$

and the second term is equivalent to the potential due to a surface current on S (normal $\underline{\hat{n}}$)

$$\underline{j}_M = \underline{M} \times \underline{\hat{n}} \tag{7}$$

We use the subscript M to indicate that these are effective magnetization currents resulting from the superposition of microscopic current loops. The volume currents (6) come from how the magnetization curls about a point—a spatial variation in the magnetization field. The surface current (7) occurs even for constant magnetization.

Example: Bar magnet "A cylindrical bar magnet has uniform magnetization M along its axis. To what current distribution is this equivalent?"

Now \underline{M} is uniform so $\underline{\nabla} \times \underline{M} = 0$ and no bulk \underline{J}_M

Surface current density $\underline{j}_{mag} = \underline{M} \times \underline{\hat{n}} = M \underline{e}_z \times \underline{e}_\rho = M \underline{e}_\phi$ has magnitude M and is 'solenoidal', i.e. resembling a solenoid with current flowing circumferentially

Example: Toroidal magnet "A long cylindrical bar magnet of uniform \underline{M} is bent into a loop. What is the equivalent current distribution?"

Curl in cylindrical polars (ρ, ϕ, z) reads:

$$\underline{\nabla} \times \underline{M} = \left[\frac{1}{\rho} \frac{\partial M_z}{\partial \phi} - \frac{\partial M_\phi}{\partial z} \right] \underline{e}_\rho + \left[\frac{\partial M_\rho}{\partial z} - \frac{\partial M_z}{\partial \rho} \right] \underline{e}_\phi$$
$$+ \frac{1}{\rho} \left[\frac{\partial}{\partial \rho} (\rho M_\phi) - \frac{\partial M_\rho}{\partial \phi} \right] \underline{e}_z$$

Direction of <u>M</u> is circumferential $\underline{M} = M \underline{e}_{\phi}$. In the curl formula, the only survivor is

$$\underline{\nabla} \times \underline{M} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho M) \underline{e}_{\mathcal{Z}} = \frac{M}{\rho} \underline{e}_{\mathcal{Z}}$$

Alongside the solenoidal (circumferential around the toroid) $j_{mag} = M$ on surface, we now have bulk magnetization current N.B. The surface current $\underline{j}_{mag} = \underline{M} \times \underline{\hat{n}}$ has constant

Figure 2: Magnetization currents in bar magnet and toroidal magnet

magnitude: larger net current on outer than inner surface. The bulk current \underline{J}_M makes up the difference

16. 3. Modification to Ampere's Law

The Ampère-Maxwell law still holds for the **full** current density \underline{J}

$$\underline{\nabla} \times \underline{B} = \mu_0 \left(\underline{J} + \epsilon_0 \frac{\partial \underline{E}}{\partial t} \right)$$

The key idea is to divide this into three contributions $\underline{J} = \underline{J}_f + \underline{J}_M + \underline{J}_P$ \underline{J}_f , current of free charges i.e. the *conduction* current $\underline{J}_M = \underline{\nabla} \times \underline{M}$, magnetization current we have just met $\underline{J}_P = polarization$ current — this new term comes from electric dipoles moving around To find \underline{J}_P we use the (definition) $\rho_P = -\underline{\nabla} \cdot \underline{P}$ and the continuity equation

$$\dot{\rho}_P = -\underline{\nabla} \cdot \underline{J}_P$$

from which we deduce

$$\underline{J}_P = \frac{\partial \underline{P}}{\partial t} \tag{8}$$

We would like Ampère-Maxwell in terms of \underline{J}_f only:

$$\underline{\nabla} \times \underline{B} = \mu_0 \left(\underline{J}_f + \underline{J}_M + \underline{J}_P + \epsilon_0 \frac{\partial \underline{E}}{\partial t} \right)$$
$$= \mu_0 \left(\underline{J}_f + \underline{\nabla} \times \underline{M} + \frac{\partial \underline{P}}{\partial t} + \epsilon_0 \frac{\partial \underline{E}}{\partial t} \right)$$
$$= \mu_0 \left(\underline{J}_f + \underline{\nabla} \times \underline{M} + \frac{\partial \underline{D}}{\partial t} \right)$$

where we have used the definition of <u>D</u>. Now shift $\underline{\nabla} \times \underline{M}$ onto left, divide by μ_0 :

$$\underline{\nabla} \times \left(\frac{\underline{B}}{\mu_0} - \underline{M}\right) = \underline{J}_f + \frac{\partial \underline{D}}{\partial t}$$

$$\underline{H} = \frac{\underline{B}}{\mu_0} - \underline{M}$$
(9)

then

We define

$$\underline{\nabla} \times \underline{H} = \underline{J}_f + \frac{\partial \underline{D}}{\partial t} \tag{10}$$

which is Ampère-Maxwell law in media. The Integral form of Ampère-Maxwell reads

$$\oint_C \underline{H} \cdot \underline{dl} = \int_S (\underline{J}_f + \partial \underline{D} / \partial t) \cdot \underline{dS}$$

where C is a closed circuit bounding S

We run into difficulties in terminology for <u>B</u>, <u>H</u>. It is actually simplest and easiest to call them 'magnetic field B' (units Tesla) and 'magnetic field H' in units of Am⁻¹. But be warned in some texts <u>B</u> is the 'magnetic field' and <u>H</u> is the 'auxiliary field'; in others <u>B</u> is the 'magnetic flux density' and <u>H</u> is the 'magnetic field strength' (which is really confusing!)

Since MII and MIII do not need to be modified as they contain no \underline{J} or ρ , we now basically have all the macroscopic Maxwell's equations which hold in media. See next lecture for summary

The **magnetic susceptibility** χ_M describes the relationship between magnetization and applied field, by relating <u>M</u> to <u>H</u>. We will assume again an *LIH medium* (linear, isotropic, homogeneous). Then the relation may be written

$$\underline{M} = \chi_M \underline{H} \tag{11}$$

Warning—some books, e.g. Grant & Phillips, use $\chi_B \underline{B} = \mu_0 \underline{M}$

The equivalent of the dielectric constant is known as the **relative permeability** of a material, μ_r :

$$\underline{B} = \mu_r \mu_0 \underline{H} \tag{12}$$

where $(\mu_r - 1) = \chi_M$. The limit of no magnetization is $\chi_M = 0$ and $\mu_r = 1$.

In contrast to dielectrics, the magnetic susceptibility χ_M can be either positive or negative, and $\mu_r < 1$ or $\mu_r > 1$.