
EM 3 Section 17: Summary of EM in media; boundary conditions on fields

17. 1. Effect of Magnetic Materials on Inductance

First we have to finish off our description of magnetism with a look at how inductance is
affected by magnetisation currents

Example: conducting core in solenoid “A long solenoid of n turns per unit length,
length ` and cross sectional area A is filled with ferrite, in which M obeys M = χmH where
χm = 900. Find the self inductance L.”

Recall the definition L = ΦB/I this stems from Faraday’s law MIII, and is therefore un-
changed by media. Ampère’s law in the static situation ∂D/∂t = 0 becomes

∇×H = Jf + 0

⇒
∮
H · dl =

∫
Jf · dS = n`I

in integral form where I is the usual conduction current. Now note the symmetry: H is
axial within the solenoid and vanishes outside for large `. Taking a loop as shown in figure,

Figure 1: Solenoid with conducting core: Amperian loop

H = nI, so M is axial; magnitude M = χmnI

Then B also must be axial:

B = µ0(H +M) = (χm + 1)µ0nI

⇒ ΦB = nALB = (χm + 1)µ0n
2ALI

⇒ L = ΦB/I = (χm + 1)µ0n
2A`

Thus L is 901 times larger than in vacuum (vacuum case: χm = 0). For a ferromagnetic
material there is a very large increase in self inductance.

On the other hand for diamagnetic/paramagnetic materials there is a small decrease/increase
in the self-inductance.

For ferromagnetic materials the energy stored in an inductor increases by a large factor
µr ≈ 103 − 106: See section 17.3 for energy stored in fields

17. 2. Electromagnetism with media: summary

Maxwell’s equations in macroscopic form read

∇ ·D = ρf (1)
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∇ ·B = 0 (2)

∇× E = −∂B
∂t

(3)

∇×H = Jf +
∂D

∂t
(4)

Definitions of D,H are
D = ε0E + P B = µ0(H +M) (5)

Relations for LIH Media

P = χEε0E M = χmH (6)

D = ε0εrE ≡ εE B = µ0µrH ≡ µH (7)

where εr = 1 + χE µr = 1 + χm

17. 3. Energy densities and Poynting Vector

Recall that E · Jf is the power delivered per unit volume so the energy density u obeys

du

dt
= E · Jf (8)

Now use modified MIV to express

E · Jf = E · (∇×H)− E · ∂D
∂t

Furthermore we can use a product rule from lecture 1 to write

E · J = H · (∇× E)−∇ · (E ×H)− E · ∂D
∂t

= −H · ∂B
∂t
−∇ · (E ×H)− E · ∂D

∂t

= − ∂

∂t

(
1

2
E ·D +

1

2
B ·H

)
−∇ · (E ×H)

provided that E · Ḋ = Ė ·D and B · Ḣ = Ḃ ·H which is true for linear static media. Then
integrating over a volume V of the medium and using the divergence theorem on the second
term as usual, we obtain from (8) for the total energy (c.f. section 14)

dU

dt
= − d

dt

∫
V

(
1

2
E ·D +

1

2
B ·H

)
dV −

∮
S
(E ×H) · dS (9)

From the first term we identify the electric and magnetic energy densities as

uM =
1

2
B ·H uE =

1

2
E ·D (10)

and from the second term we identify the Poynting vector as

S = E ×H (11)
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17. 4. Boundary Matching Problems

There are often have sharp interfaces between media. These boundaries acquire nonzero
values of σP surface polarization charge and j

mag
surface magnetisation current

In keeping with use of MI-MIV in macroscopic form, we want to avoid considering these,
and think about free charges and currents only . . .

1. First condition (from ∇ ·D = ρf ): Divergence theorem:

Figure 2: Gaussian surface for deriving continuity conditions on normal components (similar
to Griffiths Fig 2.36)

∇ ·D = ρf ⇒
∮
D · dS = (Qf )enclosed

Apply to small pillbox or “patch”, vector area dS = n̂dS

(D2 −D1) · n̂ dS = σf dS

surface density of FREE charges only. In the absence of free surface charges Dnormal is
continuous. We can also write this as

(D2 −D1) · n̂ = σf

2. Second condition (from ∇ ·B = 0):

∇ ·B = 0 ⇒
∫
B · dS = 0

Apply to small Gaussian pill box (or “patch”)∫
B · dS = (B2 −B1) · n̂ dS = 0

Therefore Bnormal is continuous. This is completely general.

3. Third condition (from ∇×E = −∂B/∂t): t̂ = unit tangent satisfies t̂ · n̂ = 0; we take
a rectangular loop straddling the interface length ` height h∮

E · dl = (E1 − E2) · t̂ l = − ∂

∂t
ΦB

Unless B is infinite, the magnetic flux cutting the loop ΦB → 0 as h→ 0

⇒ (E1 − E2) · t̂ = 0
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Figure 3: Amperian loop for deriving continuity conditions on tangential components (similar
to Griffiths Fig 2.37)

but t̂ is arbitrary within plane of the surface: Etangential is continuous is completely general
as it stands. N.B. this is two conditions in 3D

4. Fourth condition (∇×H = Jf + ∂D/∂t):

j
f

= free surface current / unit area

∮
H · dl = j

f
· ŝ `+

∂D

∂t
· ŝ ` h

where ŝ = t̂× n̂ = unit vector ⊥ to Ampèrian loop

Now take h→ 0: last term vanishes∮
H · dl = (H1 −H2) · t̂ ` = j

f
· ŝ `

In the absence of free surface currents H tangential is continuous

The general form is rarely needed and may be written in several equivalent ways:

(H1 −H2) · t̂ = j
f
· ŝ

(H tang
2 −H tang

1 ) = j
f
× n̂

(H2 −H1)× n̂ = −j
f

Summary of the continuity conditions

1. Dn continuous if σf = 0

2. Bn continuous always

3. Et continuous always

4. H t continuous if j
f

= 0

These are key results and you should know the derivations.

Problems with nonzero σf or j
f

are uncommon but for these:

(D2 −D1) · n̂ = σf replaces 1

(H tang
2 −H tang

1 ) = j
f
× n̂ replaces 4
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