EM 3 Section 17: Summary of EM in media; boundary conditions on fields

17. 1. Effect of Magnetic Materials on Inductance
First we have to finish off our description of magnetism with a look at how inductance is
affected by magnetisation currents

Example: conducting core in solenoid “A long solenoid of n turns per unit length,
length ¢ and cross sectional area A is filled with ferrite, in which M obeys M = x,,H where
Xm = 900. Find the self inductance L.”

Recall the definition L = ®p/I this stems from Faraday’s law MIII, and is therefore un-
changed by media. Ampere’s law in the static situation 0D /dt = 0 becomes

VxH = lf‘l‘g
S pH-dl = [J;dS=ntl

in integral form where [ is the usual conduction current. Now note the symmetry: H is
axial within the solenoid and vanishes outside for large ¢. Taking a loop as shown in figure,

Figure 1: Solenoid with conducting core: Amperian loop

H =nl, so M is axial; magnitude M = y,,nl
Then B also must be axial:
= ®p = nALB = (X, + 1)pon* ALI
= L=/ = (xm + 1)pon* Al
Thus L is 901 times larger than in vacuum (vacuum case: x,, = 0). For a ferromagnetic
material there is a very large increase in self inductance.

On the other hand for diamagnetic/paramagnetic materials there is a small decrease/increase
in the self-inductance.

For ferromagnetic materials the energy stored in an inductor increases by a large factor
=~ 10% — 10%: See section 17.3 for energy stored in fields

17. 2. Electromagnetism with media: summary

Maxwell’s equations in macroscopic form read

V-D = py (1)



0B
VxE = —— 3
VXxE 5 (3)
oD

VxH = J — 4

VX4 Jy+ ot (4)
Definitions of D, H are
Relations for LIH Media

D = eqeE=c¢E B=ppH=pld (7)

where €, =1+ xp tr =14 Xm

17. 3. Energy densities and Poynting Vector

Recall that £ - J; is the power delivered per unit volume so the energy density u obeys

du
—=F-J 8
e~ = ®)
Now use modified MIV to express
D
E-J;=E-(NxH) -E- 8(%

Furthermore we can use a product rule from lecture 1 to write

E-J = H-(vXE>—V~<E><H>—E~%l;
OB oD
= M o -V (ExH) -E 5-
o /1 1
_ ‘at<2E'D+2B H)—V-(ExH)

provided that £ - D=E D and B-H= B - H which is true for linear static media. Then
integrating over a volume V of the medium and using the divergence theorem on the second
term as usual, we obtain from (8) for the total energy (c.f. section 14)

ST <1

T2 B-H)dV— (E x H)-dS (9)

From the first term we identify the electric and magnetic energy densities as
1 1
uy=-B-H up=-E-D (10)
2 2
and from the second term we identify the Poynting vector as

S=ExH (11)

2



17. 4. Boundary Matching Problems

There are often have sharp interfaces between media. These boundaries acquire nonzero
values of op surface polarization charge and jmag surface magnetisation current

In keeping with use of MI-MIV in macroscopic form, we want to avoid considering these,
and think about free charges and currents only ...

1. First condition (from V - D = pf): Divergence theorem:

Figure 2: Gaussian surface for deriving continuity conditions on normal components (similar
to Griffiths Fig 2.36)

EQ:pf = fgﬁz (Qf)enclosed
Apply to small pillbox or “patch”, vector area dS = ndS

surface density of FREE charges only. In the absence of free surface charges D, orma is
continuous. We can also write this as

(Q2_21> 'ﬁ:Uf
2. Second condition (from V - B = 0):

v-B=0 = [Bds=
Apply to small Gaussian pill box (or “patch”)
[B-dS=(B,~ B,)-2dS =0

Therefore B,,orma is continuous. This is completely general.

3. Third condition (from V x E = —0B/0t): t = unit tangent satisfies ¢ - 1 = 0; we take
a rectangular loop straddling the interface length ¢ height h

. 0
fﬂ-gz(ﬂl—ﬂz)-u =~

Unless B is infinite, the magnetic flux cutting the loop &5 — 0 as h — 0

:>(E1—E2)‘i:0

3



Figure 3: Amperian loop for deriving continuity conditions on tangential components (similar
to Griffiths Fig 2.37)

but ¢ is arbitrary within plane of the surface: B yngentiar 1S continuous is completely general
as it stands. IN.B. this is two conditions in 3D

4. Fourth condition (V x H = I+ oD /ot):

Iy = free surface current / unit area

D
fH-dlzjf-éHaat-éfh

where § =t x /i = unit vector L to Amperian loop

Now take h — 0: last term vanishes
GH-dL=(H, — ) 10=], -5t
In the absence of free surface currents H,,,,jentiqr 18 continuous
The general form is rarely needed and may be written in several equivalent ways:

(H,—H,)-t = Jp- 8
(ﬂéang . ﬂiang) _ ] x ﬁ
(Hy—Hy) xn = —j

Summary of the continuity conditions

1 D, continuous if oy =0
2 B, continuous always
3. on continuous always
4 H, continuous if j ;= 0

These are key results and you should know the derivations.
Problems with nonzero oy or j ; are uncommon but for these:
(Dy—Dy)-n=oy replaces 1

(Hy™ — HY"™) = j P X0 replaces 4



