
EM 3 Section 18: Examples of continuity conditions; waves in media

18. 1. Continuity conditions: examples

Example: Inclined dielectric slab

“The electric field Eo outside a large dielectric slab of relative permittivity εr is uniform and
at angle θ to the normal to the slab. What is the electric field Ei inside the slab?”.

Figure 1: Similar to Griffiths Fig 4.34

Outside: Do = ε0E
o inside: Di = εrε0E

i. Let ψ be the angle between the normal to the
plane and Ei

Take the normal to slab in ez direction and tangent in ex direction and write (x, z) compo-
nents of fields as

Eo = (Eo sin θ, Eo cos θ) Do = ε0(E
o sin θ, Eo cos θ)

Ei = (Ei sinψ,Ei cosψ) Di = ε0εr(E
i sinψ,Ei cosψ)

Now impose b.c.s:

1. Dn = Dz continuous:

Di
z = Do

z ⇒ ε0E
o cos θ = ε0εrE

i cosψ

⇒ Ei =
Eo

εr

cos θ

cosψ

2. Et = Ex continuous:
Ei
x = Eo

x ⇒ Eo sin θ = Ei sinψ

⇒ Ei = Eo sin θ

sinψ

Result:

1

εr

cos θ

cosψ
=

sin θ

sinψ

⇒ ψ = tan−1 (εr tan θ)
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Checks: For θ = π/2: Ei = Eo, ψ = π/2 (E is purely tangential, continuous)

For θ = 0: Ei = Eo/εr, ψ = 0 (D is purely normal, continuous)

Remarks D ‖ E everywhere; but the angle of both is altered within slab. Ei is the superpo-
sition of uniform Eo with that of the polarization charges on surface of slab. Unless θ = 0,
as in a parallel plate capacitor, D/ε0 is not “the E field you would have had” without the
slab which would be Di = ε0εrE

o

Example: Spherical cavity in dielectric

“A large block of dielectric of relative permittivity εr > 1 contains a spherical cavity. The
E field far away from the cavity is uniform, with magnitude E0. What are E,D within the
cavity?”

Figure 2: Spherical cavity in dielectric - Griffiths Example 4.7

Use spherical polars with origin at the centre of the sphere and take z axis ‖ E0. Therefore
there is symmetry w.r.t. φ.

At the surface of the spherical cavity σp = P · n̂ where n̂ is outwards normal of material
(inwards normal of sphere). Therefore the field inside is enhanced by σp(θ).

The charge around the cavity σp(θ) forms an effective dipole. Outside the field lines are
distorted locally by σp(θ)

Try a uniform field in z direction within cavity:

V (r < a) = −Einz = −Einr cos θ .

Try the uniform field E0 plus a dipole form outside

V (r > a) = −E0r cos θ +
A cos θ

r2

where A is a constant to be fixed.

Recall that these two expressions satisfy Laplace’s equation away from the boundary where
there are no charges. We now just need to satisfy the boundary conditions on the fields.

First recall that E = −∇V and in spherical polars

∇V = er
∂V

∂r
+ eθ

1

r

∂V

∂θ
+ eφ

1

r sin θ

∂V

∂φ
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At the boundary: Et continuous requires Eθ continuous at r = a:

−E0a sin θ +
A sin θ

a2
= −Eina sin θ

Dn continuous requires Dr = −εr∂V/∂r continuous at r = a:

εr

(
E0 cos θ +

A cos θ

a3

)
= Ein cos θ

Combine these

Ein = εr

(
E0 +

2A

a3

)
= E0 −

A

a3

eliminate A/a3:

Ein = E0
3εr

1 + 2εr

with Ein = Einez . Then Din = εrε0Ein = ε0Ein (since the cavity has εr = 1).

Check: Ein > E0 if εr > 1, field inside enhanced.

Uniqueness ⇒ problem solved!

This example may be used to derive an approximate formula for atomic polarizability the
Clausius Mosotti equation - see tutorial 10.

18. 2. Waves in media

As a first look at waves in media let’s consider a non-conducting medium with ρf = 0,

Jf = 0. Let us write the permittivity ε = ε0εr and the permeability µ = µ0µr .

As before when we considered waves in vacuo in lecture 13 we can reduce Maxwell’s equation
to two decoupled wave equations

∇2E = εµ
∂2E

∂t2
(1)

∇2B = εµ
∂2B

∂t2
(2)

These are precisely the same as in lecture 13 but with ε0 replaced by ε and µ0 replaced by µ.

Clearly we have plane solutions

E = E0 exp i(k · r − ωt) B = B0 exp i(k · r − ωt) (3)

where k2 − µεω2 = 0. Thus the wave speed is

v =
ω

k
=

1
√
µε

and recalling c =
1

√
µ0ε0 v2

c2
=

1

µrεr
≡ 1

n2
(4)
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where n is called the refractive index of the medium

As in lecture 13 MI,MII imply

ik · E0 = 0 ik ·B0 = 0

i.e. E and B are perpendicular to the direction of propagation k and the wave is transverse.

This may seem like a trivial generalisation of waves in vacuo but the physics is remarkable—
we have managed to deal with all the atoms, atomic dipoles, polarisation etc by wrapping
them up into ε and µ and the net result is simply to change the velocity of the wave.

18. 3. Waves in conductors

In conductors there is free charge and currents flow in response to an electric field. As we
shall see this has a serious effect on the propagation of an EM wave in a conductor.

Let us start with MIV and use the linear relations

B = µH D = εE

and Ohm’s law J = σE

∇×H =
∂D

∂t
+ Jf

→ ∇×B = µε
∂E

∂t
+ µσE

Now as usual MIII yields

∂

∂t
(∇×B) = −∇× (∇× E) = ∇2E −∇(∇ · E)

The microscopic M1 reads ∇ · E = ρ/ε. Let us assume a uniform charge density so that
∇ρ = 0.

Then finally we obtain

∇2E = µε
∂2E

∂t2
+ µσ

∂E

∂t
(5)

we note an additional term on the rhs whose origin is the free current in Maxwell IV. How
will this term affect the wave?

A similar calculation (Exercise) yields

∇2B = µε
∂2B

∂t2
+ µσ

∂B

∂t
(6)

Let us proceed blindly and bravely by making an ansatz of plane wave moving in the z
direction E = E0 exp i(k̃z − ωt). When we sub this into (5) we obtain

k̃2 = µεω2 + iµσω

Clearly something has to become complex to solve this!
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