
EM 3 Section 19: Waves in Conductors: Skin Effect

19. 1. Recap: Waves in conductors

Last time we derived the equation

∇2E = µε
∂2E

∂t2
+ µσ

∂E

∂t
(1)

where σ is the conductivity. Substituting a plane wave ansatz

E = Ẽ0 exp i(k̃z − ωt) (2)

yields
k̃2 = µεω2 + iµσω . (3)

To solve this we have to take a complex wavenumber

k̃ = k + iκ (4)

Equating the real and imaginary parts in (3) yields

k2 − κ2 = µεω2 (5)

2kκ = µσω . (6)

The second equation can be solved for κ =
µσω

2k
then eliminating κ from (5) yields

k4 −
(
µσω

2

)2

= µεω2k2

This is a quadratic in k2 with solution

k2 =
1

2
µεω2 +

1

2

(
(µεω2)2 + (µσω)2

)1/2

=
µεω2

2

(1 +
(
σ

εω

)2
)1/2

+ 1

 (7)

(we have taken the positive square root so that the solution for k2 is positive). Then we can
use (5) to obtain

κ2 =
µεω2

2

(1 +
(
σ

εω

)2
)1/2

− 1

 . (8)

Now the complex wavenumber (4) implies

E = Ẽ0e
−κzei(kz−ωt) . (9)

The first exponential decays with z and causes attenuation of the wave. The characterisitic
distance over which the wave decays is known as the skin depth and is given by

δ =
1

κ
(10)
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Thus the skin depth is the typical distance a wave penetrates into a conductor.

In the result (8) the ratio σ
εω

is significant. 1/ω has the dimensions of time as does ε/σ. Thus
this quantity is a ratio of two timescales.

19. 2. Good and poor conductors

In order to understand the timescale ε/σ let us return to the continuity equation for free
charge

∂ρf
∂t

= −∇ · Jf (11)

Using Ohm’s law and Gauss’s law (plus linear media property)

∇ · Jf = σ∇ · E =
σ

ε
∇ ·D =

σ

ε
ρf .

So finally
∂ρf
∂t

= −σ
ε
ρf

which has solution
ρf (t) = ρf (0)e−(σ/ε)t .

So the free charge density decays on a timescale τ =
ε

σ
which is the relaxation time. If this

is small then any free excess charge is quickly rearranged away and the medium is a good
conductor. A perfect conductor would have this timescale tending to zero i.e. σ →∞.

On the other hand if τ is large, free charge hangs around for a long time and the medium is
a poor conductor.

Let us return to the quantity σ
εω

that appears in (8) which we may write using the relaxation
time τ and period T = 2π/ω as

σ

εω
=

1

2π

T

τ
.

we see that is (roughly) the ratio of the oscillation period of the wave to the charge relaxation
time in the conductor. If, for a given frequency ω, this ratio is large the medium is a good
conductor, whereas if the ratio is small the medium is a poor conductor for that frequency.

In the tutorial you are invited to work out the different limits. One finds from (8) that the
skin depth

δ '
(

2

µωσ

)1/2

for σ � εω

δ '
(

4ε

µσ2

)1/2

for σ � εω

Thus the skin depth is much smaller for a good conductor. Also note that for a poor
conductor the behaviour does not depend on frequency.

Typical metals are good conductors up to about 1 MHz

δ ' 1cm at 50 Hz (mains frequency)

δ ' 10 µm at 50 MHz
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Consequences / Applications of Skin effect

• shielding of sensitive electronics (metal casework)

• power lines and cable design: conductors > 1cm thick are wasted since the current
resides only in the skin layer around the outside and there is a ‘dead zone’ in the
centre

• submarines can’t use radio

• mobile phones don’t work inside metal boxes (so paint concert halls with metal paint?)

• microwave oven doors: metal mesh stops radiation escaping, holes � λ are OK

19. 3. Phase lag of magnetic field

MI and MII imply further constraints on our wave. As usual

ik̃ · Ẽ0 = 0 ik̃ · B̃0 = 0

Take the direction of propagation k̃ in the ez direction and Ẽ0 in the ex direction. Substi-
tuting in MIII

ik̃ × Ẽ0 = iωB̃0

⇒ B̃0 =
k̃Ẽ0

ω
ey . (12)

However, k̃ is complex so Ẽ0 and B̃0 will also be complex. Let us write

k̃ = Reiφ

Then using (7,8)

R =
(
k2 + κ2

)1/2
= (µεω2)1/2

(
1 +

(
σ

εω

)2
)1/4

φ = tan−1
(
κ

k

)
= tan−1


(

1 +
(
σ
εω

)2
)1/2

− 1(
1 +

(
σ
εω

)2
)1/2

+ 1


1/2

For a good conductor
φ→ tan−1[1] = π/4

and
k̃ ' (µωσ)1/2eiπ/4 (13)

The vectors Ẽ0, B̃0 are also complex. Let us write

Ẽ0 = E0e
iδE B̃0 = B0e

iδB (14)
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Putting these in (12) yields

B0e
iδB =

Reiφ

ω
E0e

iδE (15)

⇒ δB − δE = φ (16)

Condition (16) means that the magnetic field lags behind the electric field by angle φ.

Finally taking the real part to get real fields we have

E = E0e
−κz cos(kz − ωt+ δE)ex (17)

B = B0e
−κz cos(kz − ωt+ δE + φ)ey (18)

Figure 1: Electric and magnetic fields and the skin depth (Griffiths fig 9.18)

19. 4. Intrinsic Impedance

As we have seen
E = ex Ẽ0e

i(kz−ωt) ; B = ey B̃0e
i(kz−ωt)

where Ẽ0 and B̃0 are complex

Whereas in vacuum E and H = B/µ0 are in phase, here there are not. The complex number

Z ≡ Ẽ0

H̃0

(19)

is the Intrinsic Impedence of the medium. One can think of it as the generalised resistance
(when Z is real it reduces to the resistance). Dimensions are Ω (Ohms): check units E =
V/m;H = A/m ⇒ E/H = V/A = Ω

In a vacuum
E0

H0

=
E0µ0

B0

= cµ0 ≡ Zvac = 377Ω

This is real since E,H are in phase

In a dielectric
E0

H0

=
E0µ

B0

=
(
µr
εr

)1/2

Zvac

As we have seen in a good conductor we have k̃ ≈
√
iµωσ (13)

Z =
Ẽ0

H̃0

=
Ẽ0µ

B̃0

=
ωµ

k̃
'
(
µω

σ

)1/2

e−iπ/4

which is complex.
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