
EM 3 Section 2: Revision of Electrostatics

2. 1. Charge Density

At the microscopic level charge is a discrete property of elementary particles.
The fundamental charge of an electron is −e, where e = 1.6× 10−19C.

The charge of a proton is +e: qp + qe < 10−21e. Antimatter has the opposite charge to
matter: qp + qp̄ < 10−8e. ⇒ there is no charge in a vacuum!

Classical electromagnetism deals with macroscopic charge distributions.
These are defined by a charge density, ρ with units Cm−3:

ρ(r) = [Np(r)−Ne(r)]e

where N are the number densities of protons and electrons.

The total charge in a volume V is obtained by integration over the volume:

QV =
∫
V
ρ(r)dV (1)

where dV is a small element of volume dxdydz (sometimes we use dτ and sometimes d3r).

Line charges have a charge density λ with units Cm−1. Surface charges have a charge
density σ with units Cm−2. Again the total charge can be obtained by integration:

QA =
∫
A
σdS QL =

∫
L
λdl (2)

2. 2. Point charges and δ-function

In electrostatic problems it is common to introduce point charges at a particular position
r ′. These are represented by a delta function:

ρ(r) = Qδ(r − r ′) (3)

where: ∫
V
δ(r − r ′) = 1 if r ′ in V

∫
V
δ(r − r ′) = 0 otherwise (4)

N.B. Here we are using the three dimensional delta-function, in Cartesians

δ(r − r ′) = δ(x− x′)δ(y − y′)δ(z − z′) (5)

for this reason one sometimes writes δ3(r − r ′)
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2. 3. Coulomb’s Law

The force between two point charges is given by

F =
q1q2

4πε0r2
r̂ (6)

where r̂ is a unit vector indicating that the force acts along the line connecting the two
charges.

The constant ε0 is known as the permittivity of free space.

ε0 = 8.85× 10−12CN−1m−2 (7)

A quite accurate and easily remembered number is:

1

4πε0
= 9× 109Nm2C−1 (8)

We’ll take Coulomb’s law as the empirical starting point for electrostatics. The inverse
square dependence on the separation of the charges is measured to an accuracy of 2± 10−16

using experiments based on the original experiment by Cavendish (Duffin P.31).

Coulomb forces must be added as vectors using the principle of superposition. Thus the
force on a point charge q at r due to a charge distribution ρ(r′) is the sum of all charge
elements ρ(r′)d3r′ at positions r′

F =
q

4πε0

∫ (r − r′)
|r − r′|3

ρ(r′)d3r′ (9)

Example: Force due to a Line Charge

As an example consider the force of a line charge λ on a point charge Q. This can be obtained
from the sum of the contributions:

dF =
Qλdl

4πε0r2
r̂

The components parallel to the line charge cancel, so we have to sum the contributions
perpendicular to the line which are dF cos θ. This yields

F⊥ =
∫ L/2

−L/2

Qλdl

4πε0

cos θ

(l2 + a2)

This integral is best solved by transforming it into an integral over dθ rather than dl i.e. we
make the substitution:

l = a tan θ dl = a sec2 θdθ r = (l2 + a2)1/2 = a sec θ
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Figure 1: diagram of integrating over line charge elements dl at angle θ to point charge

dF⊥ =
Qλ

4πε0a

∫ θ0

−θ0
cos θdθ =

Qλ

4πε0a
2 sin θ0

where L/2 = a tan θ0 and sin θ0 = L/2 (a2 + L2/4)−1/2 (see diagram). Thus

F⊥ =
QλL

4πε0a(a2 + L2/4)1/2
(10)

where L is the length of the line charge, a is the distance of Q from the line.

We now look at different limits of (10). In the limit of an infinite line charge L→∞:

F⊥ =
Qλ

2πε0a
(11)

Note that the force due to a line charge falls off with distance like 1/a

In the “far-field” limit where a� L

F⊥ '
QλL

4πε0a2
(12)

This is the same as the force due to a point charge q = λL at the origin

2. 4. Electric Field

The force that a point charge q experiences is written

F = qE (13)

which defines the electric field: the electric field the force per unit charge experienced by
a small static test charge, q. The electric field is a vector and has units of of NC−1 or more
usually Vm−1:

Thus comparing with Coulomb’s force law we see that the electric field at r due to a point
charge q at the origin is

E =
q

4πε0r2
r̂ (14)
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Figure 2: Field lines of electric field emanating from a +ve point charge

which is also known as Coulomb’s law.

A positive (negative) point charge is a source (sink) for E.

In a field line diagram field lines begin at positive charges (or infinity) and end at negative
charges (or infinity). The density of field lines indicates the strength of the field.

2. 5. Gauss’ law for E

∮
A
E · dS =

Q

ε0
(15)

where A is any closed surface the surface, dS is a vector normal to a surface element, Q is
the total charge enclosed by the surface. E(r) · dS is the Electric flux through the surface
area element at point r. The left hand side is often written as

ΦE =
∮
A
E · dS

which is the total flux of the electric field out of the surface.

Thus the total Electric flux through any closed surface is proportional to the charge enclosed
(not on how it is distributed)

Simple example of Gauss’ law

First let us recover Coulomb’s law. Consider a point charge +q at the origin. Take the
surface as a sphere of radius r. Now by symmetry the field must point radially outwards
Thus E = Erer where Er has no angular dependence. Then the integral over spherical polar
coordinates simplifies considerably∮

A
E · dS =

∫ 2π

0
dφ
∫ π

0
dθr2 sin θEr = 4πr2Er

and we obtain from Gauss’ law Er = q/4πε0r
2 which is Coulomb’s law.
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Aside Although here we have simply stated Gauss’ law as fundamental it is actually a
consequence of the Divergence theorem and Coulomb’s Law (14).

Now consider a charge density within the sphere i.e. an insulating sphere with a uniform
charge density ρ. Again by symmetry the electric field is radial, i.e. Eθ = Eφ = 0 everywhere.
Again using a spherical closed surface of radius r to calculate the electric field Er:

Er4πr
2 =

ρ

ε0

4

3
πr3

Inside the sphere (r < a):

Er =
ρ

ε0

r

3

At the surface of the sphere (r = a):

Er =
ρ

ε0

a

3
=

3Q

4πε0a3

a

3
=

Q

4πε0a2

Outside the sphere (r > a):

Er =
Q

4πε0r2

This is the same field as for a point charge Q at the centre of the sphere!

2. 6. Electrostatic Potential

Consider Coulomb’s law (14) and the result ∇
(

1

r

)
= − 1

r2
r̂. We can then write

E = −∇
(

q

4πε0r

)
and identify the Electrostatic Potential at r due to a point charge at r′

V (r) =
q

4πε0|r − r′|
(16)

N.B. Sometimes the symbol φ is used for electrostatic potential when there is a possible
calsh of notation with V for volume.

Now due to superposition we can integrate Coulomb’s law to get the Electric field for any
charge distribution and similarly superposition holds for the potential which is then given
by e.g. for a continuous charge distribution by

V (r) =
1

4πε0

∫ ρ(r′)d3r′

|r − r′|
(17)

Moreover, we can invoke the important theorem of section 1.7 which implies that due to the
existence of the potential V , static electric fields generally obey

1. ∇× E = 0
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2. E = −∇V

3. the line integral of the field
∫ B

A
E · dl = (VA− VB) is independent of path from A to B

4. a consequence is
∮
C
E · dl = 0 for any closed curve C

N.B this holds only for static fields as we shall see later.

N.B. The potential V is only defined up to a constant which may be chosen according to
convenience. Often we choose V = 0 at r →∞.

3. gives us the work done to move a test charge from A to B

WAB = −q
∫ B

A
E · dl = q[VB − VA] (18)

Note that the work done is defined as the work done by moving the charge against the
direction of force—hence the minus sign. The potential difference VAB = VA − VB is then
the energy required to move a test charge between two points A and B, in units of Volts,
V=JC−1:

VAB =
WAB

q
(19)

If we take A at infinity and VA = 0 the work done to move the charge from infinity to B is
the potential energy of the test charge at B

U = qVB (20)

Warning Beware of confusing Electrostatic potential V and potential energy U

An equipotential is a surface connecting points in space which have the same electrostatic
potential. By definition r →∞ is an equipotential with V (∞) = 0.
2. tells us that The electric field is always perpendicular to an equipotential.
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