
EM 3 Section 20: Reflection at boundaries: normal incidence

20. 1. Reminder on plane waves and amplitudes

Consider a plane polarised wave propagating, as usual, in the ez direction

E = E0e
i(kz−ωt) E = E0e

i(kz−ωt)

As we have seen Maxwell III implies ikez × E0 = iωB0ey. Usually we take E0 = E0ex
(plane polarised in x direction) and

B0 =
kE0

ω
ey .

Now E0,B0 can, in principle, be complex, as they were for waves in a conductor. Previously
we indicated this by a tilde e.g. Ẽ0 but to lighten notation we won’t do that here and instead
just refer to E0 as the complex amplitude; the (real) amplitude is then the modulus |E0|
i.e. E0 = |E0|eiδE . Recall that the complex impedance is given by the ratio of complex
amplitudes

Z =
E0

H0

=
µE0

B0

.

As we have seen complex Z allows a phase shift between E and H

20. 2. Waves at interfaces

Now consider a plane polarised wave propagating in the ez direction normal incidence to
an interface and call this Einc. Generally medium 1 has complex impedance Z = Z1 and
medium 2 has complex impedance Z = Z2. We take coordinates: ex along Einc; ey along
H inc; ez along k1 (forming a right handed triad).

We place the boundary at z = 0 so that the x–y plane is the interface between the two media

Figure 1: Wave at interface between two media similiar to Griffiths fig. 9.13

20. 3. Interfaces between two dielectric media

It is simplest to start by considering two dielectric media where we have seen that

Zi = viµi
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is real and there is no phase lag between E and H

Einc = EI ex e
i(k1z−ωt)

H inc =
EI
µiv1

ey e
i(k1z−ωt)

Also we can take the amplitude EI to be real. Likewise for transmitted and reflected waves
(see diagram):

Etrans = ET ex e
i(k2z−ωt)

H trans =
ET
µ2v2

ey e
i(k2z−ωt)

Eref = ER ex e
i(−k2z−ωt)

Href = − ER
µ1v1

ey e
i(−k2z−ωt)

N.B. The reflected wave propagates in −ve z direction hence sign switch in the exponential
(so that wave speed is v = −ω/k) and sign switch in Href (so that −ez , E, H form a
right-handed triad).

Now invoke continuity conditions (see sections 17 and 18): ex and ey are both tangential
to interface and tangential components of E and H are continuous. Note that we assume
that there no surface currents or charges which is usually the case. Then the continuity
conditions become

Etan = Ex is continuous
⇒ EI + ER = ET

H tan = Hy is continuous

⇒ EI
µ1v1

− ER
µ1v1

=
ET
µ2v2

Solve for ET and ER, knowing EI : add the equations to find

2EI
µ1v1

=

[
1

µ1v1

+
1

µ2v2

]
ET

Also recall that

vi =
1
√
µiεi

=
c

ni

then the Amplitude transmission coefficient

t ≡ ET
EI

=
2

1 + β

and the Amplitude reflection coefficient

r ≡ ER
EI

=
1− β
1 + β

where β is defined as

β =
µ1v1

µ2v2
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Now if the permeabilities µi = µ0 (non-magnetic media) we find

r =
v2 − v1

v1 + v2

=
n1 − n2

n1 + n2

t =
2v2

v1 + v2

=
2n1

n1 + n2

So the reflected wave is in phase if v2 > v2 but out of phase if v2 < v1. If v2 = v1 (two media
the same) there is no reflected wave as expected.

Energy flow

The Poynting vector is given as usual by

S = E ×H =
1

µ
E ×B

so the energy flux per unit volume averaged over one period or intensity of the wave is
given by

|〈S〉| = 1

µ
|〈E ×B〉| = 1

µv

E2
0

2
=
εv

2
E2

0

So R the ratio of reflected to incident intensity and T the ratio of transmitted to incident
intensity are given by

R = r2 =
(
n1 − n2

n1 + n2

)2

T =
ε2v2

ε1v1

t2 =
4n1n2

(n1 + n2)2

N.B. since R + T = 1 we recover energy conservation.

20. 4. General waves at interface: normal incidence

Basically we now repeat the above calculation but for complex impedance so that there may
be phase lag between E and H

Einc = EI ex e
i(k1z−ωt)

H inc =
EI
Z1

ey e
i(k1z−ωt)

Etrans = ET ex e
i(k2z−ωt)

H trans =
ET
Z2

ey e
i(k2z−ωt)

Eref = ER ex e
i(−k2z−ωt)

Href = −ER
Z1

ey e
i(−k2z−ωt)

We again assume that there no surface currents or charges and the continuity conditions
reduce to Etan = Ex continuous and H tan = Hy continuous

EI + ER = ET
EI
Z1

− ER
Z2

=
ET
Z2
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Solve for ET and ER, knowing EI as before

t ≡ ET
EI

=
2Z2

Z2 + Z1

r ≡ ER
EI

=
Z2 − Z1

Z2 + Z1

N.B. These are now complex quantities

20. 5. Reflection at Conducting Surface: why metals are shiny

The x–y plane is a boundary between vacuum (medium 1) and a conductor (medium 2).

Z1 = Zvac = 377Ω

Z2 =

√
−iµω
σ

=
1− i
σδ

where δ =
√

2/µσω is skin depth

Z2 is complex and ω-dependent. But typical magnitude is tiny... e.g. Cu at 1010 Hz:

|Z2| = 0.036Ω = 10−4Zvac

and at 1015 Hz (visible light frequency)

|Z2| = 3.6Ω = 0.01Zvac

Amplitude reflection (note phase reversal)

r =
Z2 − Z1

Z2 + Z1

' −1

to within (complex) terms of order 1 percent

Near perfect reflection (with phase reversal) is exhibited by good conductor— this explains
why metals are shiny.

Physical origin is the skin effect; transmitted wave decays like e−z/δ, almost all the energy
you put in comes back out

Energy Flow

With complex impedances we need to bit more careful with the Poynting vector. Generally
we use the time-averaged Poynting vector which is given by

〈S〉 = k̂
1

2
<
(

1

Z

)
|E0|2

and the intensity is given by its magnitude

|〈S〉| = 1

2
<
(

1

Z

)
|E0|2
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