EM 3 Section 20: Reflection at boundaries: normal incidence

20. 1. Reminder on plane waves and amplitudes

Consider a plane polarised wave propagating, as usual, in the \underline{e}_z direction

$$\underline{E} = \underline{E}_0 e^{i(kz - \omega t)} \qquad \underline{E} = \underline{E}_0 e^{i(kz - \omega t)}$$

As we have seen Maxwell III implies $ik\underline{e}_z \times \underline{E}_0 = i\omega B_0\underline{e}_y$. Usually we take $\underline{E}_0 = E_0\underline{e}_x$ (plane polarised in x direction) and

$$\underline{B}_0 = \frac{kE_0}{\omega}\underline{e}y \; .$$

Now E_0, B_0 can, in principle, be complex, as they were for waves in a conductor. Previously we indicated this by a tilde e.g. \tilde{E}_0 but to lighten notation we won't do that here and instead just refer to E_0 as the complex amplitude; the (real) amplitude is then the modulus $|E_0|$ i.e. $E_0 = |E_0|e^{i\delta_E}$. Recall that the complex impedance is given by the ratio of complex amplitudes

$$Z = \frac{E_0}{H_0} = \frac{\mu E_0}{B_0}$$

As we have seen complex Z allows a *phase shift* between \underline{E} and \underline{H}

20. 2. Waves at interfaces

Now consider a plane polarised wave propagating in the \underline{e}_z direction normal incidence to an interface and call this \underline{E}_{inc} . Generally medium 1 has complex impedance $Z = Z_1$ and medium 2 has complex impedance $Z = Z_2$. We take coordinates: \underline{e}_x along \underline{E}_{inc} ; \underline{e}_y along \underline{H}_{inc} ; \underline{e}_z along \underline{k}_1 (forming a right handed triad).

We place the boundary at z = 0 so that the x-y plane is the interface between the two media

Figure 1: Wave at interface between two media similar to Griffiths fig. 9.13

20. 3. Interfaces between two dielectric media

It is simplest to start by considering two dielectric media where we have seen that

$$Z_i = v_i \mu_i$$

is real and there is no phase lag between \underline{E} and \underline{H}

$$\underline{E}_{inc} = E_I \underline{e}_{\mathcal{X}} e^{i(k_1 z - \omega t)}$$
$$\underline{H}_{inc} = \frac{E_I}{\mu_i v_1} \underline{e}_{\mathcal{Y}} e^{i(k_1 z - \omega t)}$$

Also we can take the amplitude E_I to be real. Likewise for transmitted and reflected waves (see diagram):

$$\underline{\underline{E}}_{trans} = E_T \underline{\underline{e}}_{\mathcal{X}} e^{i(k_2 z - \omega t)}$$
$$\underline{\underline{H}}_{trans} = \frac{E_T}{\mu_2 v_2} \underline{\underline{e}}_{\mathcal{Y}} e^{i(k_2 z - \omega t)}$$
$$\underline{\underline{E}}_{ref} = E_R \underline{\underline{e}}_{\mathcal{X}} e^{i(-k_2 z - \omega t)}$$
$$\underline{\underline{H}}_{ref} = -\frac{E_R}{\mu_1 v_1} \underline{\underline{e}}_{\mathcal{Y}} e^{i(-k_2 z - \omega t)}$$

N.B. The reflected wave propagates in -ve z direction hence sign switch in the exponential (so that wave speed is $v = -\omega/k$) and sign switch in \underline{H}_{ref} (so that $-\underline{e}_z$, \underline{E} , \underline{H} form a right-handed triad).

Now invoke continuity conditions (see sections 17 and 18): \underline{e}_x and \underline{e}_y are both *tangential* to interface and tangential components of \underline{E} and \underline{H} are **continuous**. Note that we assume that there *no surface currents or charges* which is usually the case. Then the continuity conditions become

$$\underline{E}_{tan} = E_x$$
 is continuous

$$\Rightarrow E_I + E_R = E_T$$

 $\underline{H}_{tan} = H_y$ is continuous

$$\Rightarrow \frac{E_I}{\mu_1 v_1} - \frac{E_R}{\mu_1 v_1} = \frac{E_T}{\mu_2 v_2}$$

Solve for E_T and E_R , knowing E_I : add the equations to find

$$\frac{2E_I}{\mu_1 v_1} = \left[\frac{1}{\mu_1 v_1} + \frac{1}{\mu_2 v_2}\right] E_T$$

Also recall that

$$v_i = \frac{1}{\sqrt{\mu_i \epsilon_i}} = \frac{c}{n_i}$$

then the Amplitude transmission coefficient

$$t \equiv \frac{E_T}{E_I} = \frac{2}{1+\beta}$$

and the Amplitude reflection coefficient

$$r \equiv \frac{E_R}{E_I} = \frac{1-\beta}{1+\beta}$$

where β is defined as

$$\beta = \frac{\mu_1 v_1}{\mu_2 v_2}$$

Now if the permeabilities $\mu_i = \mu_0$ (non-magnetic media) we find

$$r = \frac{v_2 - v_1}{v_1 + v_2} = \frac{n_1 - n_2}{n_1 + n_2}$$
$$t = \frac{2v_2}{v_1 + v_2} = \frac{2n_1}{n_1 + n_2}$$

So the reflected wave is in phase if $v_2 > v_2$ but out of phase if $v_2 < v_1$. If $v_2 = v_1$ (two media the same) there is no reflected wave as expected.

Energy flow

The Poynting vector is given as usual by

$$\underline{S} = \underline{E} \times \underline{H} = \frac{1}{\mu} \underline{E} \times \underline{B}$$

so the energy flux per unit volume averaged over one period or **intensity** of the wave is given by

$$|\langle \underline{S} \rangle| = \frac{1}{\mu} |\langle \underline{E} \times \underline{B} \rangle| = \frac{1}{\mu v} \frac{E_0^2}{2} = \frac{\epsilon v}{2} E_0^2$$

So R the ratio of reflected to incident intensity and T the ratio of transmitted to incident intensity are given by

$$R = r^{2} = \left(\frac{n_{1} - n_{2}}{n_{1} + n_{2}}\right)^{2} \qquad T = \frac{\epsilon_{2}v_{2}}{\epsilon_{1}v_{1}}t^{2} = \frac{4n_{1}n_{2}}{(n_{1} + n_{2})^{2}}$$

N.B. since R + T = 1 we recover energy conservation.

20. 4. General waves at interface: normal incidence

Basically we now repeat the above calculation but for complex impedance so that there may be phase lag between \underline{E} and \underline{H}

$$\underline{\underline{E}}_{inc} = E_{I} \underline{\underline{e}}_{x} e^{i(k_{1}z-\omega t)}$$

$$\underline{\underline{H}}_{inc} = \frac{E_{I}}{Z_{1}} \underline{\underline{e}}_{y} e^{i(k_{1}z-\omega t)}$$

$$\underline{\underline{E}}_{trans} = E_{T} \underline{\underline{e}}_{x} e^{i(k_{2}z-\omega t)}$$

$$\underline{\underline{H}}_{trans} = \frac{E_{T}}{Z_{2}} \underline{\underline{e}}_{y} e^{i(k_{2}z-\omega t)}$$

$$\underline{\underline{E}}_{ref} = E_{R} \underline{\underline{e}}_{x} e^{i(-k_{2}z-\omega t)}$$

$$\underline{\underline{H}}_{ref} = -\frac{E_{R}}{Z_{1}} \underline{\underline{e}}_{y} e^{i(-k_{2}z-\omega t)}$$

We again assume that there no surface currents or charges and the continuity conditions reduce to $\underline{E}_{tan} = E_x$ continuous and $\underline{H}_{tan} = H_y$ continuous

$$\begin{array}{rcl} E_I+E_R &=& E_T\\ \frac{E_I}{Z_1}-\frac{E_R}{Z_2} &=& \frac{E_T}{Z_2} \end{array}$$

Solve for E_T and E_R , knowing E_I as before

$$t \equiv \frac{E_T}{E_I} = \frac{2Z_2}{Z_2 + Z_1}$$
$$r \equiv \frac{E_R}{E_I} = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

N.B. These are now *complex* quantities

20. 5. Reflection at Conducting Surface: why metals are shiny

The x-y plane is a boundary between vacuum (medium 1) and a conductor (medium 2).

$$Z_1 = Z_{vac} = 377\Omega$$
$$Z_2 = \sqrt{\frac{-i\mu\omega}{\sigma}} = \frac{1-i}{\sigma\delta}$$

where $\delta = \sqrt{2/\mu\sigma\omega}$ is skin depth

 Z_2 is complex and ω -dependent. But typical magnitude is tiny... e.g. Cu at 10¹⁰ Hz:

$$|Z_2| = 0.036\Omega = 10^{-4} Z_{vac}$$

and at 10^{15} Hz (visible light frequency)

$$|Z_2| = 3.6\Omega = 0.01 Z_{vac}$$

Amplitude reflection (note phase reversal)

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \simeq -1$$

to within (complex) terms of order 1 percent

Near perfect reflection (with phase reversal) is exhibited by good conductor— this explains why metals are shiny.

Physical origin is the skin effect; transmitted wave decays like $e^{-z/\delta}$, almost all the energy you put in comes back out

Energy Flow

With complex impedances we need to bit more careful with the Poynting vector. Generally we use the *time-averaged* Poynting vector which is given by

$$\langle \underline{S} \rangle = \underline{\hat{k}} \, \frac{1}{2} \Re \left(\frac{1}{Z} \right) |E_0|^2$$

and the **intensity** is given by its magnitude

$$|\langle \underline{S} \rangle| = \frac{1}{2} \Re \left(\frac{1}{Z}\right) |E_0|^2$$