
EM 3 Section 21: Reflection at boundaries: oblique incidence

Last lecture we analysed the case of waves impinging on an interface at normal incidence.
Here we consider a general angle of incidence

21. 1. General Angle of Incidence

As before we take an interface between two media to be the x–y plane at z = 0: medium 1

Figure 1: Wave at interface between two media Griffiths fig. 9.14

is z < 0; medium 2 is z > 0.

We can take the incident wave vector kI to be in the x–z plane which is then the plane of
incidence; y out of page

Einc = EI e
i(kI .r−ωt)

Eref = ER e
i(kR.r−ωt)

Etrans = ET e
i(kT .r−ωt)

We also have the corresponding magnetic field vectors e.g.

H inc =
1

µ1v1

k̂ × Einc

Now we have to fit the boundary conditions at the interface. First of all we note that all the
boundary conditions will be of the form

( )ei(kI ·r−ωt) + ( )ei(kR·r−ωt) = ( )ei(kT ·r−ωt)

So for the boundary conditions to hold for all points on the interface x–y plane we must
have the exponential factors (i.e. the phases) equal

⇒ kI · r = kR · r = kT · r = φ = constant (1)

and straightaway we see that kI , kR, kT , all lie in the same plane—the plane of incidence.
i.e. none of them has a component in the y direction

Then (1) becomes
kI sin θIx = kR sin θRx = kT sin θTx

But this must hold for all x and also we know from k = ω/v that

kI = kR =
v2

v1

kT =
n1

n2

kT

1



which together imply

θI = θR angle of incidence equals angle of reflection

n1 sin θI = n2 sin θT Snell’s Law

We now have the job of satisfying the boundary conditions (see sections 17,18) which become

ε1(EI + ER)z = ε2(ET )z (2)

(BI +BR)z = (BT )z (3)

(EI + ER)x,y = ε2(ET )x,y (4)

(HI +HR)x,y = (HT )x,y (5)

The final two equations are both pairs of equation for the two transverse x,y components.

Polarisation Effects

The reflection and transmission coefficients r, t depend on the polarisation state of the inci-
dent beam. There are two basic polarisation states

A. EI in plane of incidence (EI has no y component and HI along ey)

B. HI in plane of incidence (HI has no y component and EI along ey)

Other polarisation states can be decomposed into A+B by superposition. We will only work
out CASE A: E in plane of incidence

Figure 2: Wave at interface between two media Griffiths fig. 9.15

Clearly (3) is automatically satisfied as B has no z component. It turns out (as you can
check) that (5) does not give any additional information to (2) and (4)

Thus noting sign of Ez: − for I,T but + for R

Einc = EI (ex cos θI − ez sin θI) ei(φ−ωt)

Eref = ER (ex cos θI + ez sin θI) ei(φ−ωt)

Etrans = ET (ex cos θT − ez sin θT ) ei(φ−ωt)

Then condition (2) ⇒ ε1(−EI + ER) sin θI = −ε2ET sin θT

and condition (4)⇒ (EI + ER) cos θI = ET cos θT
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2 equations in 2 unknowns, solve for ET , ER: We define as before

β =
µ1v1

µ2v2

=

(
µ1ε2
ε1µ2

)1/2

and also

α =
cos θT
cos θI

then we find

r ≡ ER
EI

=
α− β
α + β

t ≡ ET
EI

=
2

α + β
(6)

which can also be written as

r =
Z2 cos θT − Z1 cos θI
Z2 cos θT + Z1 cos θI

t =
2Z2 cos θI

Z2 cos θT + Z1 cos θI
(7)

where Zi is the usual impedance. For nonmagnetic dielectrics µ1 = µ2 = µ0, Z1 = Zvac/n1,
Z2 = Zvac/n2 ⇒

r =
n1 cos θT − n2 cos θI
n1 cos θT + n2 cos θI

use Snell’s law to eliminate n’s:

r =
sin 2θT − sin 2θI
sin 2θT + sin 2θI

(8)

Fresnel Formula for case A (E in plane of incidence)

21. 2. Brewster’s Angle

An interesting consequence of Fresnel equations (6) is that r = 0 when α = β. This occurs
at special angle of incidence know as Brewster’s angle θI = θB(

1−
(
n1

n2

)2

sin2 θB

)1/2

= β cos θB (9)

⇒ 1−
(
n1

n2

)2

sin2 θB = β2(1− sin2 θB) (10)

and finally this gives

sin2 θB =
1− β2(
n1

n2

)2
− β2

(11)

In the typical case µ1 = µ2 we have β = n2/n1 and one can show that

tan θB =
n2

n1

(12)

(θB ' 50◦ for water/air)

N.B. Brewster’s angle only exists for case A: in case B there is no such effect.
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Brewster angle microscopy: Shine ‘case-A light’ on clean surface at θI = θB: no reflected
ray

Now adsorb thin layer of another material: reflected ray caused solely by film ⇒ sensitive
probe of film structure

Polarisation by reflection: Unpolarised light source = random superposition of waves
with E in plane of incidence (case A) and transverse to it (case B)

Near to Brewster’s angle reflected ray is almost all polarised

One can eliminate reflected ray (glare) with polaroid filter which cuts out one plane of
polarised light; basis of polaroid sunspecs etc.

21. 3. Total Internal Reflection

Choose n1 > n2 (e.g. wave leaving dielectric into vacuum) then θT > θI ; θT = 90◦ at θI = θC .
Snell: sin θC = n2/n1. For θI > θC : we have Total Internal Reflection

Figure 3: Total internal reflection Griffiths fig 9.28

Evanescent Waves

To see what is happening for θI > θC , we persevere with the maths and note that if

sin θT =
n2

n1

sin θI > 1

then cos θT = (1− sin2 θT )1/2 = i

((
n2

n1

sin θI

)2

− 1

)1/2

clearly we can’t interpret θT as an angle any more but the maths is valid

One can show that

Eevanescent = ET e
i(kT ·r−ωt) = ET e

i(kx−ωt) e−z/α

where
k =

ωn1

c
sin θI α−1 =

ω

c

√
n2

1 sin2 θI − n2
2

with α ' the wavelength (∼ 0.5µm). So we have attenuation in the z direction

The transmission coefficient t 6= 0 but no energy is carried into medium 2.
Instead there is a travelling wave directed along the interface, which decays in the z direction
(into medium 2):

The decay is not adsorption or the skin effect but can be though of as Light tunnelling:
light can tunnel across a thin layer of medium 2 via the evanescent wave.
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