EM 3 Section 21: Reflection at boundaries: oblique incidence

Last lecture we analysed the case of waves impinging on an interface at normal incidence.
Here we consider a general angle of incidence

21. 1. General Angle of Incidence

As before we take an interface between two media to be the x—y plane at z = 0: medium 1

Figure 1: Wave at interface between two media Griffiths fig. 9.14

is z < 0; medium 2 is z > 0.

We can take the incident wave vector k; to be in the x—z plane which is then the plane of
incidence; y out of page

E,. E, ek r—wt)
E.y = Epenr)
Etrans = ET ei(ETI_wt)

We also have the corresponding magnetic field vectors e.g.

inc inc
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Now we have to fit the boundary conditions at the interface. First of all we note that all the
boundary conditions will be of the form
( )ei(@I.Z—wt) + ( )ez‘(@R-z—wt) _ ( )ei(ET'i_Wt)

So for the boundary conditions to hold for all points on the interface x—y plane we must
have the exponential factors (i.e. the phases) equal

=k;-r=kr-r=kp-r=¢= constant (1)

and straightaway we see that k;, kp, kp, all lie in the same plane—the plane of incidence.
i.e. none of them has a component in the y direction

Then (1) becomes
krsinf;x = krpsingr = krsinOrx

But this must hold for all z and also we know from k£ = w/v that

V2 ny
ki =kr=—kr=—kr
U1 no
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which together imply

0y = 0O angle of incidence equals angle of reflection

nisinf; = ngsinfr Snell’s Law

We now have the job of satisfying the boundary conditions (see sections 17,18) which become

eil(Er+ Eg): = e(Er) (2)

(Br+Bgr): = (Br): (3)
(E1+ ER)ey = €(Er)ey (4)
(Hr+ Hp)oy = (Hr)oy (5)

The final two equations are both pairs of equation for the two transverse x,y components.

Polarisation Effects

The reflection and transmission coefficients r, ¢ depend on the polarisation state of the inci-
dent beam. There are two basic polarisation states

A. E; in plane of incidence (E£; has no y component and H; along gy)
B. H; in plane of incidence (H; has no y component and E; along ey)

Other polarisation states can be decomposed into A+B by superposition. We will only work
out CASE A: E in plane of incidence

Figure 2: Wave at interface between two media Griffiths fig. 9.15

Clearly (3) is automatically satisfied as B has no z component. It turns out (as you can
check) that (5) does not give any additional information to (2) and (4)

Thus noting sign of E,: — for I,'T but 4 for R

Einc = b (Qx cosf; — €z sin 91) ei(¢_Wt)
E’“ef = Lg (QLU cos 0 + €z sin 91) ei(¢_“t)

Etrans =Er (Ql' COoSs QT — € sin GT) ei(¢_Wt)

Then condition (2) = e;(—E; + Eg)sinf; = —eaEpsinfr
and condition (4)=  (E;+ Eg)cost; = Ercosfr



2 equations in 2 unknowns, solve for Ep, Er: We define as before

1/2
3= M1ty <H1€2>
H2U2 €112

and also

cos Or
o =
cos 0
then we find
FE — E 2
=k_2 b t=2L - (6)
Er a+ 3 Er a+

which can also be written as

ZycosOr — Z; cosO; ; 275 cos 01
r= =
Zycosbr + Zy cosbr Zo cosOp + Zi cos b

(7)

where Z; is the usual impedance. For nonmagnetic dielectrics 1 = po = po, 21 = Zyae/m1,
ZQ - Zvac/n2 =
~ mycostr —nycosbr

1y cos O + ng cos Oy

use Snell’s law to eliminate n’s:

_sin 207 — sin 20;
 sin 207 + sin 26,

Fresnel Formula for case A (£ in plane of incidence)

21. 2. Brewster’s Angle

An interesting consequence of Fresnel equations (6) is that » = 0 when o = (3. This occurs
at special angle of incidence know as Brewster’s angle 6; = 0p

1/2
<1 - (nl>25m2 03> = [cosbp 9)

na
ni 2 .92 2 )
=1- () sin“ 0 = (1 — sin” fp) (10)
U]
and finally this gives
1 — 2
sin?fg = 27ﬁ (11)
() -7
In the typical case pu; = ps we have 5 = ny/ny and one can show that
tanfp = 12 (12)
n

(0p ~ 50° for water/air)

N.B. Brewster’s angle only exists for case A: in case B there is no such effect.
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Brewster angle microscopy: Shine ‘case-A light’ on clean surface at §; = f5: no reflected
ray

Now adsorb thin layer of another material: reflected ray caused solely by film = sensitive
probe of film structure

Polarisation by reflection: Unpolarised light source = random superposition of waves
with E in plane of incidence (case A) and transverse to it (case B)

Near to Brewster’s angle reflected ray is almost all polarised

One can eliminate reflected ray (glare) with polaroid filter which cuts out one plane of
polarised light; basis of polaroid sunspecs etc.

21. 3. Total Internal Reflection

Choose ny > ng (e.g. wave leaving dielectric into vacuum) then 67 > 0r; 67 = 90° at 0; = O¢.
Snell: sin O = ng/ny. For 0; > 6c: we have Total Internal Reflection

Figure 3: Total internal reflection Griffiths fig 9.28

Evanescent Waves

To see what is happening for §; > 6., we persevere with the maths and note that if

. ng .
sinfr = —sinf; >1
51

5 1/2
then cosfr = (1 —sin? QT)1/2 = <<n2 sin 01) - 1)
n

clearly we can’t interpret 61 as an angle any more but the maths is valid
One can show that

E , = ETei(ET.E—wt) _ ETei(kx—wt) e—z/a

——evanescen

wny . _ w R
k= ——sin6; at = Zy/n?sin?6; —nj
c c

with a ~ the wavelength (~ 0.5um). So we have attenuation in the z direction

where

The transmission coefficient ¢ # 0 but no energy is carried into medium 2.
Instead there is a travelling wave directed along the interface, which decays in the z direction
(into medium 2):

The decay is not adsorption or the skin effect but can be though of as Light tunnelling;:
light can tunnel across a thin layer of medium 2 via the evanescent wave.



