
EM 3 Section 7: Magnetic force, Currents and Biot Savart Law

7. 1. Magnetic force

The magnetic field B is defined by the force on a moving charge:

F = q(E + v ×B) (1)

This is the Lorentz Force Law. The second term is the magnetic force. The unit of
magnetic field is the Tesla (T) which is NA−1m−1. Actually this is a pretty big unit and a
Gauss = 10−4T is more commonly used.

7. 2. Current density and current elements

The first thing to note is that a moving charge by itself does not really constitute a current.
Instead we need a moving density of charges. For the moment we will consider steady
currents so that at any point we have a constant density of charged particles moving past
the point (clearly we will need sources of current somewhere but let’s not worry about that
for the moment). Also we can have zero net charge but a steady current, if the densities
of positive and negative particles are the same but their velocities are different. A current
consists of n charges q per unit volume moving with average velocity v. These charges form
a local current density:

J = nqv (2)

The total current I passing through a surface is obtained by integration:

I =
∫
A
J · dS (3)

where as usual dS points normal to the surface.

Units
The unit of current is the Ampere (A), which is a base SI unit, 1A = 1Cs−1.The unit of bulk
current density J is A/m2. We can also have surface current densities usually denoted K or
j ( units A/m) and line current densities usually denoted I (units A). Calling all of these
‘densities’ is a bit confusing since none has units of current per unit volume but that is the
way it is!

What we shall see is that steady currents play the key role in magnetism as do electric
charges in electrostatics, that is

Stationary charges ⇒ constant electric fields: electrostatics
Steady currents ⇒ constant magnetic fields: magnetostatics
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A current element, denoted here dI, has units Am and is a vector

dI(r) = J(r)dV Current element in bulk

dI(r) = K(r)dS Current element on surface

dI(r) = I(r)dl Current element along a wire

Warning: you need to take care with current elements e.g. KdS 6= KdS since the left
hand side points in the direction of the current vector on the surface, but the right hand
side points normal to the surface. On the other hand Idl = Idl since a line current element
always points along the wire in the direction dl.

Figure 1: Diagram of rotating charged disc

Example: Rotating disc An insulating disc of radius R, carrying a uniform surface charge
density σ, is mechanically rotated about its axis with an angular velocity vector ω (in the
ez direction). As a result it has a current density on its surface:

K = σv = σω × r = σrωeφ (4)

Note that the current density increases linearly with r. Check that you understand how the
direction comes from the right hand rule.

Conductivity

The quantity σ (conductivity) describes the intrinsic conduction properties of a bulk material
in response to an electric field. The current density is:

J = σE (5)

Note that σ is a property of a particular material, and that it depends on temperature. A
typical value of σ for a metal is 6× 107 Ω−1m−1.

Sometimes resistivity defined as ρ =
1

σ
is used.

Remark: Actually (5) makes a crucial assumption that J and E are parallel which is not
necessarily the case for some non-isotropic materials where, for example, current can only
flow in certain directions. In such cases one needs a conductivity tensor.

The force on a steady current element is

dF = dI ×B (6)
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In particular, if the current element comes from a bulk current density dI = J dV we have:

dF = J ×B dV (7)

7. 3. Biot Savart Law and Calculation of Magnetic Fields

Just as a charge creates an electric field, so a current element at r′ creates a magnetic field
at a position r:

dB(r) =
µ0

4π

dI(r′)× ( ̂r − r′)
|r − r′|2

(8)

This is known as the Biot-Savart Law. The law was established expermentally; we shall
take it as our starting point. It plays the same role for magnetostatics as Coulomb’s law for
the electric field due to a point charge in electrostatics.

The constant µ0 is known as the permeability of free space:

µ0 = 4π × 10−7Hm−1 (9)

The direction of the field is perpendicular to dI(r′) and ̂r − r′, the vector from the current
element to the point r . The direction can be remembered from the usual right hand rule
for vector products.

Note that superposition holds for magnetic fields, therefore the magnetic field can be
calculated by integration over current elements:

B(r) =
µ0

4π

∫ dI(r′)× ( ̂r − r′)
|r − r′|2

(10)

e.g. for integration over a volume containing a distribution of current density:

B(r) =
µ0

4π

∫
V

J(r′)× ( ̂r − r′)
|r − r′|2

dV ′ (11)

7. 4. Magnetic Force between Currents

Substituting the Biot Savart Law for the magnetic field due to a current element into (6)

dF 12 =
µ0

4πr2
12

dI1 × (dI2 × r̂12) (12)

which corresponds to the force between a pair of current elements. Here r̂12 points
from dI1 to dI2 Equation (12) is also referred to as Biot-Savart law and is the equivalent of
Coulomb’s law for the force between two point charges.

If the current elements are due to current densities we have

dF 12 =
µ0

4πr2
J1 × (J2 × r̂)dV1dV2 (13)

where the force is attractive for parallel currents, and repulsive for antiparallel currents.
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Figure 2: Diagram for calculating B from an infinite straight wire Griffiths Fig. 5.18

7. 5. Example of long straight wire

We consider a long straight wire which we choose to be along the z axis so that a point r′

on the wire is given by r′ = z′ez . We want to compute the field using (10). It is best to
use cylindrical polars: we choose the origin along the wire so that r is ⊥ to ez i.e. r = ρeρ
where ρ is the radial distance of the point from the wire.

Now dI = Idz′ez and dr′ = dz′ez so

dr′ × (r − r′) = dr′ × r = ρdz′eφ

and we find

B(r) =
µ0Iρ

4π
eφ

∫ ∞
−∞

dz′

|ρ2 + z′2|3/2

To evaluate the remaining integral we use substitution z′ = ρ tan θ so that dz′ = ρ sec2 θ dθ
and ρ2 + z′2 = ρ2 sec2 θ. Then we obtain

B(r) =
µ0I

4πρ
eφ

∫ π/2

−π/2
cos θdθ =

µ0I

2πρ
eφ

We now consider the force on a current element of a second parallel wire (at distance d

Figure 3: Two parallel wires separated by distance d (Griffiths Fig. 5.20)

from the first) coming from the magnetic field B1(r) due to the first wire. Again we choose
coordinates so that this current element lies at r = ρeρ in cylindrical polars

dF = dI2(r)×B1(r) = I2dzez ×
µ0

2πd
I1eφ

= −µ0I1I2
2πd

dzeρ

There is an attractive force per unit length between two parallel infinitely long straight wires:
this is the basis of the definition of the Ampère.
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