
EM 3 Section 1: Revision: Whistlestop tour of Vector Calculus

You will have met vector calculus last year in Maths for Physics 4. This year we shall see
the true utility and power of vector calculus in formulating electrostatics. You need to revise
div, grad, curl! The following highlights some keypoints but does not replace your second
year notes.

1. 1. Gradient

The gradient operator (“grad”) acting on a scalar field f(r) is a vector which in Cartesian
Co-ordinates (x,y,z) reads

∇f =
∂f

∂x
ex +

∂f

∂y
ey +

∂f

∂z
ez (1)

Important things to remember:

• ∇f is a vector quantity (vectors either underlined or boldface in these notes)

• ∇f points in the direction of maximum increase of f

• ∇f is perpendicular to the level surfaces of f

• For a small change of position dr the change in f is df = ∇f · dr

• The line integral
∫ B

A
∇f · dl = fB − fA is independent of the path from A to B

Simple example to be memorised ∇r = r̂.

Remark Often due to the symmetry of the problem it is convenient to consider other co-
ordinate systems such as spherical polar coordinates which comprise (r, φ, θ) or cylindrical
polar coordinates which comprise (ρ, φ, z) (you should remind yourselves of these co-ordinate
systems). In these systems the expression for the gradient (and the other operations below)
look more complicated e.g. in spherical polars

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ

(where er = r̂). But when the system has a spherical symmetry f = f(r) (no θ or φ
dependence) the gradient is simply ∇f = ∂f

∂r
er.

This is consistent with the chain rule which states

∇f(r) =
df

dr
∇r =

df

dr
r̂ (2)

Important example: ∇
(

1

r

)
=

d

dr

(
1

r

)
r̂ = − 1

r2
r̂
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1. 2. Divergence and the Divergence Theorem

The divergence (“div”) is a scalar product ∇· of the gradient operator with a vector field K.
In Cartesians it reads

∇ ·K =
∂Kx

∂x
+
∂Ky

∂y
+
∂Kz

∂z
(3)

The divergence represents the rate with which flux lines of the vector field K are converging
towards sinks (negative divergence), or diverging from sources (positive divergence).

Simple example: ∇ · r =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3

The divergence theorem states that:

∮
A
K · dS =

∫
V
∇ ·K dV (4)

where A is a closed surface enclosing a volume V , dV = dx dy dz is a volume element (some-
times written d3r), and dS is a vector element of area (normal to the surface).

This theorem holds for any vector field K and any closed surface A.

1. 3. Curl and Stokes’ Theorem

The curl operator is a vector product of the gradient operator ∇× with a vector field K:

∇×K =

[
∂Kz

∂y
− ∂Ky

∂z

]
ex +

[
∂Kx

∂z
− ∂Kz

∂x

]
ey +

[
∂Ky

∂x
− ∂Kx

∂y

]
ez (5)

or

∇×K =

∣∣∣∣∣∣∣∣∣
ex ey ez
∂
∂x

∂
∂y

∂
∂z

Kx Ky Kz

∣∣∣∣∣∣∣∣∣ (6)

The curl represents the curvature of the vector field K around an axis of rotation. Using
the corkscrew rule, clockwise(anticlockwise) rotation has a curl in the negative(positive)
direction along the axis of rotation.

Simple example to be memorised: ∇× r = 0
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Stokes’s theorem states that: ∮
C
K · dl =

∫
A
∇×K · dS (7)

where C is a closed contour bounding a surface A.

This theorem holds for any vector field K and any closed curve C.

1. 4. Laplacian

The Laplacian of a scalar field is a scalar defined as

∇2f = ∇ · (∇f) (8)

and reads in Cartesians

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(9)

1. 5. Useful Identities

These are best proved by suffix notation (see MfP4).

First, there are various product identities. Generally these are as you’d expect,

1. ∇(φf) = φ∇f + (∇φ)f

2. ∇ · (φA) = φ ∇ · A+ A · ∇φ

3. ∇× (φA) = φ (∇× A) + (∇φ)× A

You should be able to write these down.

Others are less obvious and do not need to be memorised:

4. ∇ (A ·B) = (A · ∇)B + (B · ∇)A+ A× (∇×B) +B × (∇× A)

5. ∇ · (A×B) = B · (∇× A)− A · (∇×B)

6. ∇× (A×B) = A (∇ ·B)−B (∇ · A) + (B · ∇)A− (A · ∇)B

Second there are some simple identities (involving two grads) that prove fundamental to
Electromagnetism

• “curl grad = 0”
∇× (∇f) = 0 (10)

where f(r) is any scalar field.
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• “div curl = 0”
∇.(∇×K) = 0 (11)

where K(r) is any vector field.

• “curl curl = grad div - delsquared”

∇× (∇×K) = ∇(∇.K)−∇2K (12)

Note that:

∇2Kx =
∂2Kx

∂x2
+
∂2Kx

∂y2
+
∂2Kx

∂z2

The first two (10,11) are crucial.

1. 6. ∗ 3d Taylor expansion

As noted above the change in f due to a small change of position dr is df = ∇f · dr

This is actually the first term in the 3d Taylor expansion about a point r′ which may be
neatly written

f(r) =
∞∑
n=0

1

n!
[(r − r′) · ∇]

n
f(r)|r=r′ (13)

= f(r0) +
3∑
i=1

(xi − x′i)
∂f(r)

∂xi

∣∣∣∣∣
r=r′

+
1

2

3∑
i=1

3∑
j=1

(xi − x′i)(xj − x′j)
∂2f(r)

∂xj∂xi

∣∣∣∣∣
r=r′
· · ·(14)

Often the first two terms f(r) ' f(r0) + (r − r0) · ∇f(r)|r=r0 is all we require.

1. 7. Important Theorem

The following three statements concerning a vector Field F over some region in space are
equivalent

1. ∇× F = 0 the vector field is irrotational

2. F = ∇φ the vector field may be written as the gradient of a scalar field

3. the line integral of the field
∫ B

A
F · dl is independent of the path from A to B;

a consequence is
∮
C
F · dl = 0 for any closed curve C

You should remind yourselves of how each implies the other
e.g. Stokes theorem gives 1. ⇔ 3.

This theorem is the heart of electrostatics.
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EM 3 Section 2: Revision of Electrostatics

2. 1. Charge Density

At the microscopic level charge is a discrete property of elementary particles.
The fundamental charge of an electron is −e, where e = 1.6× 10−19C.

The charge of a proton is +e: qp + qe < 10−21e. Antimatter has the opposite charge to
matter: qp + qp̄ < 10−8e. ⇒ there is no charge in a vacuum!

Classical electromagnetism deals with macroscopic charge distributions.
These are defined by a charge density, ρ with units Cm−3:

ρ(r) = [Np(r)−Ne(r)]e

where N are the number densities of protons and electrons.

The total charge in a volume V is obtained by integration:

QV =
∫
V
ρ(r)dV (1)

where dV is a small element of volume dxdydz (sometimes we use dτ and sometimes d3r).

Line charges have a charge density λ with units Cm−1. Surface charges have a charge
density σ with units Cm−2. Again the total charge can be obtained by integration:

QA =
∫
A
σdS QL =

∫
L
λdl (2)

2. 2. Point charges and δ-function

In electrostatic problems it is common to introduce point charges at a particular position
r ′. These are represented by a delta function:

ρ(r) = Qδ(r − r ′) (3)

where: ∫
V
δ(r − r ′) = 1 if r ′ in V

∫
V
δ(r − r ′) = 0 otherwise (4)

N.B. Here we are using the three dimensional delta-function, in Cartesians

δ(r − r ′) = δ(x− x′)δ(y − y′)δ(z − z′) (5)

for this reason one sometimes writes δ3(r − r ′)
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2. 3. Coulomb’s Law

The force between two point charges is given by

F =
q1q2

4πε0r2
r̂ (6)

where r̂ is a unit vector indicating that the force acts along the line connecting the two
charges.

The constant ε0 is known as the permittivity of free space.

ε0 = 8.85× 10−12CN−1m−2 (7)

A quite accurate and easily remembered number is:

1

4πε0
= 9× 109Nm2C−1 (8)

We’ll take Coulomb’s law as the empirical starting point for electrostatics. The inverse
square dependence on the separation of the charges is measured to an accuracy of 2± 10−16

using experiments based on the original experiment by Cavendish (Duffin P.31).

Coulomb forces must be added as vectors using the principle of superposition. Thus the
force on a point charge q at r due to a charge distribution ρ(r′) is

F =
q

4πε0

∫ (r − r′)
|r − r′|3

ρ(r′)d3r′ (9)
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Example: Force due to a Line Charge

As an example consider the force of a line charge λ on a point charge Q. This can be obtained
from the sum of the contributions:

dF =
Qλdl

4πε0r2
r̂

Figure 1: diagram of integrating over line charge elements dl at angle θ to point charge

The components parallel to the line charge cancel, so we have to sum the contributions
perpendicular to the line which are dF cos θ. This yields

F⊥ =
∫ L/2

−L/2

Qλdl

4πε0

cos θ

(l2 + a2)2

This integral is best solved by transforming it into an integral over dθ rather than dl i.e. we
make the substitution:

l = a tan θ dl = a sec2 θdθ r = (l2 + a2)1/2 = a sec θ

dF⊥ =
Qλ

4πε0a

∫ θ0

−θ0
cos θdθ =

Qλ

4πε0a
2 sin θ0

where L/2 = a tan θ0 and sin θ0 = L/2 (a2 + L2/4)−1/2 (see diagram). Thus

F⊥ =
QλL

4πε0a(a2 + L2/4)1/2
(10)

where L is the length of the line charge, a is the distance of Q from the line.

In the limit of an infinite line charge L→∞:

F⊥ =
Qλ

2πε0a
(11)

Note that the force due to a line charge falls off with distance like 1/a!

In the “far-field” limit where a� L

F⊥ '
QλL

2πε0a2
(12)
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This is the same as the force due to a point charge q = λL at the origin

2. 4. Electric Field

The force that a point charge q experiences is written

F = qE (13)

which defines the electric field. The electric field is defined as the force per unit charge
experienced by a small static test charge, q, in units of NC−1 or more usually Vm−1:

Thus comparing with Coulomb’s force law we see that the field at r due to a point charge q
at the origin is

E =
q

4πε0r2
r̂ (14)

which is also known as Coulomb’s law.

A positive (negative) point charge is a source (sink) for E. In a field line diagram field lines

Figure 2: Field lines of electric field emanating from a point charge

begin at positive charges (or infinity) and end at negative charges(or infinity). The density
of field lines indicates the strength of the field.

2. 5. Gauss’s law for E

∮
A
E · dS =

Q

ε0
(15)

where A is any closed surface the surface, dS is a vector normal to a surface element, and
ε0 = 8.85 × 10−12 F m−1, Q is the total charge enclosed by the surface. E(r) · dS is the
Electric flux through the surface area element at point r. The left hand side is often written
as

ΦE =
∮
A
E · dS

which is the total flux of the electric field out of the surface..

Thus the total Electric flux through any closed surface is proportional to the charge enclosed
(not on how it is distributed)
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Simple example of Gauss’ law

First let us recover Coulomb’s law. Consider a point charge +q at the origin. Take the
surface as a sphere of radius r. Now by symmetry the field must point radially outwards
Thus E = Erer where Er has no angular dependence. Then the integral over spherical polar
coordinates simplifies considerably∮

A
E · dS =

∫ 2π

0
dφ
∫ π

0
dθr2 sin θEr = 4πr2Er

and we obtain from Gauss’ law Er = q/4πε0r
2 which is Coulomb’s law.

Aside Although here we have simply stated Gauss’ law as fundamental it is actually a
consequence of the Divergence theorem and Coulomb’s Law (14).

Now consider a charge density within the sphere i.e. an insulating sphere with a uniform
charge density ρ. Again by symmetry the electric field is radial, i.e. Eθ = Eφ = 0 everywhere.
Again using a spherical closed surface of radius r to calculate the electric field Er:

Er4πr
2 =

ρ

ε0

4

3
πr3

Inside the sphere (r < a):

Er =
ρ

ε0

r

3

At the surface of the sphere (r = a):

Er =
ρ

ε0

a

3
=

3Q

4πε0a3

a

3
=

Q

4πε0a2

Outside the sphere (r > a):

Er =
Q

4πε0r2

This is the same field as a point charge at the centre of the sphere!

2. 6. Electrostatic Potential

Consider Coulomb’s law (14) and the result ∇
(

1

r

)
= − 1

r2
r̂. We can then write

E = −∇(
q

4πε0r
)

and identify the Electrostatic Potential at r due to a point charge at r′

V (r) =
q

4πε0|r − r′|
(16)

Now due to superposition we can integrate Coulomb’s law to get the Electric field for any
charge distribution and similarly superposition holds for the potential which is then given
by e.g. for a continuous charge distribution by

V (r) =
1

4πε0

∫ ρ(r′)d3r′

|r − r′|
(17)
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Moreover, we can invoke the important theorem of section 1.7 which implies that due to the
existence of the potential V , static electric fields generally obey

1. ∇× E = 0

2. E = −∇V

3. the line integral of the field
∫ B

A
E · dl = (VA− VB) is independent of path from A to B

4. a consequence is
∮
C
E · dl = 0 for any closed curve C

N.B this holds only for static fields as we shall see later.

N.B. The potential V is only defined up to a constant which may be chosen according to
convenience. Often we choose V = 0 at r →∞.

3. gives us the work done to move a test charge from A to B

WAB = −q
∫ B

A
E · dl = q[VB − VA] (18)

Note that the work done is defined as the work done by moving the charge against the
direction of force—hence the minus sign. If we take A at infinity and VA = 0 the work done
to move the charge from inifinty to B is the potential energy of the test charge at B

U = qVB (19)

Warning Beware of confusing Electrostatic potential V and potential energy U

The potential difference VAB = VA − VB is then the energy required to move a test charge
between two points A and B, in units of Volts, V=JC−1:

VAB =
WAB

q
(20)

An equipotential is a surface connecting points in space which have the same potential.
By definition r →∞ is an equipotential with V (∞) = 0.
2. tells us that The electric field is always perpendicular to an equipotential.

10



EM 3 Section 3: Gauss’ Law

3. 1. Conductors and Insulators

A conductor is a material in which charges can move about freely. Therefore any electric
field forces the charges to rearrange themselves until a static equilibrium is reached. This in
turn means that

• Inside a conductor E=0 everywhere, ρ = 0 and any free charges must be on the
surfaces.

• Inside a conductor the potential V is constant and the surfaces of a conductor are an
equipotential.

• The electric field just outside a conductor must be normal to the surface and propor-
tional to the surface charge density:

E =
σ

ε0
n̂ (1)

In an insulator charges cannot move around, and the charge density can have any form. If
ρ(r) 6= 0, the potential is non-uniform, and E 6= 0 inside the insulator. Insulators are often
referred to as ‘dielectric’ materials and we shall study their properties later on.

3. 2. Gauss’ law in differential form

Gauss’ law reads ∫
A
E.dS =

Qenc

ε0
=
∫
V

ρ(r)

ε0
dV

for any closed surface A, and enclosed volume V .

Apply divergence theorem ∫
A
E.dS =

∫
V
∇ · E dV

⇒
∫
V
∇ · E(r) dV =

∫
V

ρ(r)

ε0
dV

Since this holds for any domain V , however small ⇒ integrands are identical!!

∇ · E(r) =
ρ(r)

ε0
(2)

This is Gauss’s Law In Differential Form. It is the first of the fundamental laws of
electromagnetism i.e. Maxwell I.

NB: for static conductor this proves earlier claim that E = 0⇒ ρ = 0
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Aside expressions for the divergence in cylindrical and spherical polar coordinates:

∇ · E =
1

ρ

∂(ρEρ)

∂ρ
+

1

ρ

∂Eφ
∂φ

+
∂Ez
∂z

(3)

∇ · E =
1

r2

∂(r2Er)

∂r
+

1

r sin θ

∂(sin θEθ)

∂θ
+

1

r sin θ

∂Eφ
∂φ

(4)

These are nasty and you do not need to remember them, but they simplify in the case of

cylindrical or spherical symmetry e.g. for E = Erer, ∇ · E =
1

r2

∂(r2Er)

∂r
.

3. 3. Examples of Gauss’s Law

Griffiths 2.2.3 “Gauss’s law affords when symmetry permits by far the quickest and easiest
way of computing electric fields”.

Note well the qualifier when symmetry permits.

Basically there are 3 kinds of symmetry which work and for which the following gaussian
surfaces for the surface integral in Gauss’ law are appropriate

1. Spherical symmetry : concentric sphere

2. Cylindrical symmetry : coaxial cylinder

3. Plane symmetry : a “pill box”

Example 1: Insulating sphere

Let us return to the example of the previous lecture i.e. an insulating sphere with a uniform
charge density ρ.

Inside the sphere (r < a):

Er =
ρ

ε0

r

3
∇ · E =

1

r2

∂(r2Er)

∂r
=

ρ

3ε0

1

r2

∂r3

∂r
=

ρ

ε0

Outside the sphere (r > a):

Er =
Q

4πε0r2
∇ · E =

Q

4πε0

1

r2

∂

∂r

(
r2

r2

)
= 0

so Gauss’ law holds.

Example 2: Line charge

For an infinite line charge, λ, by symmetry Ez = Eφ = 0, and the closed surface is chosen
to be a cylinder of length l and radius a with the line charge as its axis. N.B. here ρ is the
radial coordinate of cylindrical polars
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Figure 3: Diagram of integrating over a cylindrical surface around line charge

ΦE = Eρ2πρl =
λ

ε0
l

Eρ =
λ

2πε0ρ

Compare this method to summing the Coulomb forces in the previous lecture!

Example 3: Surface charge

For an infinite surface charge, σ, the closed surface is chosen to be a circular “pillbox” of
radius, r, and height h, with its axis normal to the surface and its centre at the surface.
Note - from the symmetry of the problem the electric field parallel to the surface is zero.

Figure 4: Diagram of Gaussian pillbox around surface charge sheet

If the surface is a thin insulating sheet there are equal and opposite perpendicular electric
fields on either side of the sheet:

ΦE = 2Ezπr
2 =

σ

ε0
πr2 Ez =

σ

2ε0
(5)

If instead the charge is on the surface of a large conducting object, the inside of the
conductor has E = 0, and the only contribution to the flux comes from the electric field
normal to the outer surface.

Ez =
σ

ε0
(6)

As quoted at the beginning of the lecture.
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Note the factor of two between the conducting surface and the thin insulating sheet!

Remark: In both both insulating and conductor cases ∇ · E =
∂Ez
∂z

= 0 for z 6= 0 but the

electric field is discontinuous across the charge sheet at z = 0 with discontinuity σ/ε0. We
can write the Electric field for all z using a step function

Θ(z) =

{
1 for z > 0
0 for z < 0

e.g. for the conducting sheet

Ez =
σ

ε0
Θ(z)

Then we use the identity

δ(z) =
d

dz
Θ(z) (7)

and find that

∇ · E =
∂Ez
∂z

=
σ

ε0
δ(z) (8)

Which is consistent with Equation (2) with a source of charge at z = 0.

3. 4. A delta function identity and point charges

Consider the vector field

v =
r̂

r2

Now this is a spherically symmetric field with vr = 1/r2 so using div in spherical polars we
get

∇ · v =
1

r2

∂

∂r

(
r2 1

r2

)
= 0 (9)

But clearly the integral over a spherical surface radius r∮
v · dS = 4πr2vr = 4π (10)

So Gauss’s theorem which should relate the two results appears to yield a contradiction.
The source of the problems is r = 0 where v diverges (is singular).

The contradiction can be resolved by noting that actually

∇ ·
(
r̂
r2

)
= 4πδ(r) (11)

then ∫
V
∇ · vdV = 4π

∫
V
δ(r)dV = 4π

Identity (11) implies that ∇ · E = ρ/ε0 holds even for a point charge for which ρ = qδ(r)

and E =
q

4πε0

r̂

r2
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EM 3 Section 4: Poisson’s Equation

4. 1. Poisson’s Equation

If we replace E with −∇V in the differential form of Gauss’s Law we get Poisson’s Equa-
tion:

∇2V = ∇.∇V = − ρ
ε0

(1)

where the Laplacian operator reads in Cartesians ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

It relates the second derivatives of the potential to the local charge density.

In a region absent of free charges it reduces to Laplace’s equation:

∇2V = 0 (2)

Note that one solution is a uniform potential V = V0, but this would only apply to the
case where there are no free charges anywhere. More generally we have to solve Laplace’s
equation subject to certain boundary conditions and this yields non-trivial solutions.

Poisson’s and Laplace’s equations are among the most important equations in physics, not
just EM: fluid mechanics, diffusion, heat flow etc. They can be studied using the techniques
you have seen Physical Mathematics e.g. separation of variables, orthogonal polynomials etc

4. 2. Solutions of Poisson’s Equation: helpful properties

If you know V everywhere you can find ρ at any point by differentiating twice.

Example
V = a+ bx2y

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 2by + 0 + 0

ρ(x, y, z) = −ε0∇2V = −2ε0by

If you know ρ everywhere you can find V at any point but you have to solve Poisson’s
equation. This is a harder but much more common task! It is the central problem of
electrostatics.

Helpful Property 1: Linearity

If ∇2V1 = −ρ1(r)

ε0
and ∇2V2 = −ρ2(r)

ε0
then

∇2(V1 + V2) = −ρ1(r) + ρ2(r)

ε0

15



This behaviour is known as linearity and gives rise to the “superposition principle” which
is used to sum potentials V arising from different charge distributions (or different pieces of
the same charge distribution).

The extreme case of this is to sum the charge distribution as a set of point charges.

V =
∑
i

Vi ρ =
∑
i

ρi ∇2Vi = −ρi(r)
ε0

(3)

Warning: must check BC’s still satisfied

Superposition also applies to E = −∇V

often easier to superpose V (scalar) than E (vector), but not always: go case by case

Helpful Property 2: Uniqueness Theorem

If a potential obeys Poisson’s equation and satisfies the known boundary conditions it is the
only solution to a problem. This is known as the uniqueness theorem.

Basically if one can find a solution by whatever means —usually educated guesswork—then
it is the unique solution.

Proof of Uniqueness Consider region R with boundary B. Let ρ(r) be specified within R

Figure 5: Diagram of region and boundary for Uniqueness Theorem

BCs: suppose either

(i) V is specified on B

(ii) E = −∇V is specified on B

Then any solution of Poisson’s equation obeying the BCs is the only solution [up to a boring
added constant in case (ii)] NB: B could be at infinity

Proof of Theorem

Suppose there are 2 different solutions, V1, V2. Define ψ = V1 − V2

Then ∇2ψ = 0 in R (Laplace’s equation)

BCs on B: case (i) ψ = 0; case (ii) ∇ψ = 0

Laplace: ∇2ψ = 0 ⇒ ψ∇2ψ = 0

⇒ ∇ · (ψ∇ψ)− (∇ψ)2 = 0
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⇒
∫
R

[
∇ · (ψ∇ψ)− (∇ψ)2

]
dτ = 0

Apply divergence theorem to first term∫
B
ψ∇ψ.dS −

∫
R

(∇ψ)2 dτ = 0

First term now zero by BCs in either case

The remaining integrand is non-negative, so it must vanish to get zero for the integral

∇ψ = 0 ⇒ ψ = V1 − V2 = const

The constant is zero by BCs in case (i)

4. 3. Simple Example: hollow conductor

Figure 6: Diagram of cavity in a conductor

Consider a cavity R in a conductor Claim: If ρ = 0 in cavity, then E = 0 inside

Proof: Inner surface is equipotential (since it is conducting), V = V0. This gives our
boundary condition

Now inside the cavity ∇2V = 0 since there is no charge.

Thus we must solve Laplace’s equation subject to the condition that V is constant along the
(closed) boundary.

But one solution is V = V0 everywhere within R and this satisfies boundary condition.

Uniqueness: this is only solution ⇒ E = −∇V = 0 for any charge-free cavity within a
conductor.

4. 4. The Method of Images

This is a technique for guessing (and then verifying) the solution to Poisson’s equation. Due
to uniqueness it is then the only solution.

The idea is to place a suitable set of “image charges” external to the physical region of the
field, in such a way that they generate the required boundary conditions, without affecting
Poisson’s equation within the physical region (since an image charge is not in the physical
region).
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Point charge near a conducting plane

Consider a point charge, Q, a distance a from a flat conducting surface at a potential V0 = 0.

Figure 7: Point charge near a conducting plane

The problem is to solve Poisson’s equation with a point charge at aez and boundary condition
that V = 0 on the boundary (z = 0) of the physical region z ≥ 0.

Now the potential from the point charge at aez is

V =
1

4πε0

1

(x2 + y2 + (z − a)2)1/2
(4)

The idea is to consider an ‘image charge’ in the unphysical region z < 0. In the physical
region (z > 0) the potential due to such an image charge satisfies Laplace’s equation therefore
we can simple add it to (4) and still satisfy Poisson’s equation.

The correct guess for the image charge is −q at −aez . This basically reflects the symmetry
of the problem. To check that the boundary condition is actually satisfied we write out the
potential

V =
q

4πε0

[
1

(x2 + y2 + (z − a)2)1/2
− 1

(x2 + y2 + (z + a)2)1/2

]
(5)

and see that it vanishes at z = 0 as required.

N.B. if the conducting sheet is at potential V0 6= 0 we simply add a constant V0 to (5).

E must be normal to the conducting surface E = Ezez . Therefore on the surface

Ez = − ∂V

∂z

∣∣∣∣∣
z=0

=
−q

4πε0

[
− (z − a)

(x2 + y2 + (z − a)2)3/2
+

(z + a)

(x2 + y2 + (z + a)2)3/2

]∣∣∣∣∣
z=0

=
−q

2πε0

a

(x2 + y2 + a2)3/2

and the surface charge density is

σ =
−q
2π

a

(x2 + y2 + a2)3/2

Integrating this over the whole surface (left as exercise) shows that the surface charge is
−q. Note that there is an attractive force between the charge distribution on the conducting
surface and the point charge above it.

The method of images is not really a ‘method’ as such, more an inspired guess which works
when the problem has appropriate symmetry (see tutorial problems for further examples).
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EM 3 Section 5: Electric Dipoles

An electric dipole is formed by two point charges +q and −q connected by a vector a. The

electric dipole moment is defined as p = qa .

By convention the vector a points from the negative to the positive charge. Here we also
take the origin to be at the centre and a to be aligned to the z axis (see diagram)

So far we are considering a physical dipole however it is useful to take the idealisation of an
ideal dipole which is a→ 0, q →∞ but p finite. As we shall see the ideal dipole is a useful
approximation to the ‘physical dipole’.

Figure 8: Diagram of electric dipole aligned along z axis

5. 1. Field of an electric dipole

We first calculate the potential and then the field:

V =
q

4πε0

(
1

r+

− 1

r−

)
(1)

where r± are the distances from the +ve(-ve) charge to the point r.

Now

|r ± a/2|2 = (r2 ± a · r + a2/4) = r2

(
1± a

r
cos θ +

a2

4r2

)

Now consider the “far field limit” r � a

1

r±
=

1

r

(
1∓ a

r
cos θ +

a2

4r2

)−1/2

' 1

r

(
1± a

2r
cos θ +O((a/r)2)

)
where O((a/r)2) indicates terms proportional to (a/r)2 or higher powers

Thus we obtain in the far-field limit

V =
qa cos θ

4πε0r2
=

p · r̂
4πε0r2

(2)
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One can check that (away from the charges) this is a solution of Laplace’s equation (see
tutorial)

The components of the electric field E= −∇V are simplest form in spherical polar coordi-
nates:

Er = −∂V
∂r

=
2p cos θ

4πε0r3
Eθ = −1

r

∂V

∂θ
=
p sin θ

4πε0r3
(3)

To get a co-ordinate free form of the electric field we can use (see tutorial sheet 1)

E = −∇V =
1

4πε0

(
3(p · r)r
r5

−
p

r3

)
(4)

The important point to note is that a dipole field is 1/r3, whereas a point charge field is 1/r2

Figure 9: Sketch of electric dipole field: ideal and ‘physical’

5. 2. Why dipoles matter I

Many molecules have a permanent dipole moment p (e.g. H20)
All others, and all atoms, acquire an induced dipole when placed in E field
Since atoms and molecules are (a) neutral and (b) almost pointlike, the dipole concept is
crucial to understanding media see later.

5. 3. Interaction of dipole with external Electric Field

To calculate the force on a dipole in an external field Eext = −∇φ (note here we use φ for
the electrostatic potenial of the external field) it is simplest to first calculate the potential
energy of the dipole in this field:

Udip = qφ(a/2)− qφ(−a/2)

' qa · ∇φ = −p · Eext

where we have made a Taylor expansion to first order in a.

Thus Udip is minimised when the dipole is parallel to the field and maximised when antipar-
allel. You need ∆U = 2pE to reverse the direction of the dipole!
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Moreover we can compute the force felt by the dipole through

F = −∇Udip = ∇(p · E) (5)

There is no net force on a dipole in a uniform electric field, since the two charges of a dipole
experience equal and opposite force. However, in a non-uniform field the force moves the
dipoles along the field gradient.

In a uniform field there is still a torque which acts to align the dipole moment p along the
direction of E:

T = (a/2)× (qE)− (a/2)× (−qE) = p× E (6)

The work done by the torque in rotating the dipole from an aligned position through an
angle θ relative to the field is:

W =
∫ θ

0
Tdθ =

∫ θ

0
pE sin θdθ = pE(1− cos θ) (7)

To summarise

i) dipoles tend to align with an external field

ii) dipoles migrate up field gradients

5. 4. Why dipoles matter II

Let’s go back to the Taylor expansion of the electrostatic potential, this time for an arbitrary
bounded charge distribution confined to some region R

V (r) =
1

4πε0

∫
R

dV ′
ρ(r′)

|r − r′|

=
1

4πε0

∫
R

dV ′
ρ(r′)

(r2 − 2r · r′ + r′2)1/2

=
1

4πε0

∫
R

dV ′
ρ(r′)

r

(
1− 2r · r′

r2
+

(r′)2

r2

)−1/2

' 1

4πε0

∫
R

dV ′ρ(r′)

[
1

r
+
r̂ · r′

r2
+

3(r̂ · r′)2 − (r′)2

2r3
+ · · ·

]

In the last line we have used the expansion

(1 + x)−1/2 = 1− 1

2
x+

3

8
x2 + · · ·

and gathered together terms according to the power of r i.e. we have made a far-field
expansion (r � 1) in powers of 1/r.

We can tidy up the expansion to write it as

V (r) =
1

4πε0

Q

r
+

1

4πε0

r̂ · P
r2

+
1

4πε0

1

r3

1

2

∑
i,j

Qij r̂ir̂j + · · · (8)
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where

Q =
∫
V

dV ′ρ(r′)

P =
∫
V

dV ′r′ρ(r′)

Qij =
∫
V

dV ′(3r′ir
′
j − (r′)2δij)ρ(r′)

Thus Q is the total net charge ; P is the dipole moment and
r̂TQr̂
r3

is the quadupole moment

with Q the quadrupole tensor (a basis dependent matrix). Each of the monopole, dipole,
quadrupole fields have distinct and characteristic shapes.

The first term (‘monopole term’) would normally be the dominant term and this would quite
reasonably represent the far-field charge distribution as that of a single lump of charge at
the origin.

However, when the total charge Q vanishes (as in the case of a dipole) it is the next term
(‘dipole term’) which is dominant. One can think of charge distributions where the second
term term also vanishes (e.g. electric quadrupole where P = 0 see figure) then the dominant
term becomes the third term (quadrupole term) and so on.

Figure 10: 4 charges forming an Electric quadrupole

Significantly, each term in the expansion (8) is separately a solution of Laplace’s equation
(outside of the region V that contains the charge distribution).

Thus one can use the idea of the method of images and use an image dipole

V =
1

4πε0

̂(r − r′) · P
|r − r′|2

at some point r′ outside of the physical region to solve Poison’s equation in the physical
region, and fix certain boundary conditions on the boundary of the physical region.

An example is a conducting sphere in a uniform external field E0. The boundary condition
is that E is radial at the surface of the sphere which is an equipotential. This is achieved by
using an image electric dipole at the centre of the sphere - see tutorial. The result is that
on the surface of the sphere there is an induced charge distribution which is positive on one
side and negative on the other.
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EM 3 Section 6: Electrostatic Energy and Capacitors

6. 1. Electrostatic Energy of a general charge distribution

Here we provide a proof that the electrostatic energy density: (energy per unit volume)

uE =
dUE
dV

=
1

2
ε0|E|2 (1)

is a completely general result for any electric field.

An assembly of n − 1 point charges at positions rj gives a potential at ri (N.B. here the
subscript labels the charge):

φ(ri) =
1

4πε0

n−1∑
j=1

qj
|ri − rj|

N.B. Here we use φ for potential to avoid confusion between potential and volume V .

Bringing up another charge qn (the nth one) from infinity to point rn requires work:

Wn = qnφ(rn) =
qn

4πε0

n−1∑
j=1

qj
|rn − rj|

i.e. for charge 1, the work is zero since there is no potential yet, for charge 2 the work is q2×
potential due to charge 1, for charge 3 the work is q3 × potential due to charges 1 charge 2
etc

So the total energy UE of the charges, which is equal to the total work required to assemble
all n charges, is

UE =
1

4πε0

n∑
i=1

∑
j<i

qiqj
|ri − rj|

=
1

8πε0

n∑
i=1

n∑
j=1(j 6=i)

qiqj
|ri − rj|

Make sure you understand the factor of 1/2 which appears in the second equality when we
allow both sums to go over all charges.

We can write the final equality as

UE =
1

2

∑
i

qiφi (2)

where φi =
∑
j 6=i

qj
4πε0|ri − rj|

is the potential at ri due to the other charges j

This can be generalized in the limit of a continuous charge distribution to an integral over
the charge density ρ:

UE =
1

2

∫
ρ(r)φ(r)dV (3)

It turns out that we can write this integral in another way. First recall

∇ · E =
ρ

ε0
.
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Then (3) becomes

UE =
ε0
2

∫
(∇ · E)φ dV (4)

Now use a product rule from section 1 to write

φ(∇ · E) = ∇ · (φE)− (∇φ) · E
= ∇ · (φE) + |E|2

whence (4) yields two integrals. The first can be rewritten using the divergence theorem∫
V
∇ · (φE)dV =

∫
S
(φE) · dS

Then taking V as all space and the boundary S at infinity where we have boundary conditions
φ(∞) = 0 and ∇φ = 0 which means that this integral is zero. Therefore the final result
comes from the second integral:

UE =
ε0
2

∫
all space

|E|2dV (5)

and from this we get (1) for the energy density.

Warning: The general result (5) was derived for a continuous charge distribution since we
began from (3). When there are point charges we have to be careful with self-energy contri-
butions which should be excluded from the integral (3), otherwise they lead to divergences.

Equation (3) leads us to think that Electrostatic energy lies in the charge distribution whereas
from (5) we might infer that the energy is stored in the electrostic field. Which picture is
correct? In fact these interpretations are tautologous.

A final thing to note is that since (5) is quadratic in the field strength we do not have
superposition of energy density.

6. 2. Capacitors

A capacitor is formed when two neighbouring conducting bodies (any shape) have equal and
opposite surface charges. Suppose we have two conductors one with charge Q and the other
with charge −Q. Since V is constant on each conductor the potential difference between the
two is V = V1 − V2. In general to actually find V (r) and E can be difficult (need to solve
Poisson’s equation between conductors). However there will be a unique well-defined value
of the capacitance defined as the ratio of the charge on each body to the potential difference
between the bodies:

C =
Q

Vd
(6)

Capacitance is measured in Farads = Coulombs/Volt.

A capacitor is basically a device which stores electrostatic energy by charging up
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Figure 11: Diagram of Parallel Plate Capacitor

Parallel Plate Capacitor

Two parallel plates of area A have a separation d. They carry surface charges of +σ and
−σ, which are all on the inner surface of the plates because of the attractive force between
the charges on the two plates. The normal to the plate is taken in ez direction (positive up).

To obtain the Electric field we use Gauss’ Law. First take a pillbox that straddles the inner
surface of the upper plate say. Now inside the conducting plate E = 0. Therefore between
the two plates the field normal to the inner surface of the upper plate is

Einside =

(
(+σ)

2ε0

)
(−ez) = − σ

ε0
ez

Now take a pillbox that straddles the outer surface of the upper plate since there is no charge
on the upper surface and since inside the plate E is zero we must have that E = 0 at the
outer surface.

Eoutside = 0 Einside = − σ
ε0
ez

Now

Ez = −∂V
∂z

⇒ V =
σz

ε0
and the potential difference between the plates is:

Vd =
Qd

Aε0
(7)

C =
Q

Vd
=
Aε0
d

(8)

Note that C is a purely geometric property of the plates!

6. 3. Electrostatic Energy

Let us compare the energy of the charge distribution in the capacitor using the two formulas
(3,5) derived in the last section.

First use (3): The integral simplifies to a sum of two contributions from the upper plate
which has charge Q and potential φ1 and the lower plate which has charge −Q and potential
φ2 U = Q

2
(φ1 − φ2) = QVd

2
Thus

U =
QVd

2
=
CV 2

d

2
=
Q2
d

2C
(9)
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where we have used the definition of capacitance.

On the other hand we can integrate over the electric field, which is constant between the
plates, using (5).

UE =
ε0
2

∫
|E|2dV =

ε0
2
Ad

(
σ

ε0

)2

and using the definition of capacitance the result (8)

UE =
d

2ε0

Q2

A
=
Q2

2C

6. 4. *Finite size disc capacitors

So far we have assumed the capacitor plates are effectively infinite. In this case the electric
field between the two plates was uniform When should you worry about the finite size of
capacitor plates?

For a finite-size capacitor it is possible that there are edge effects where the field can bulge
out of the capacitor and also non-uniformity of the field within the capacitor. To get a
feeling for when such effects become important let us compute the potential and field due to
a finite-size disc.

For a finite size disc of charge in the x–y plane, carrying a surface charge density σ, we
perform a two-dimensional integral over the charge distribution to obtain the potential at a
height z along the axis of the disc

V =
1

4πε0

∫
S

σdS

(x2 + y2 + z2)1/2

This integral is easy when we use plane polar co-ordinates for the disc dS = ρdρdφ where
ρ2 = x2 + y2 and

V (z) =
σ

4πε0

∫ 2π

0
dφ
∫ ∞

0
dρ

ρ

(ρ2 + z2)1/2

=
σ

4πε0
2π
[
(ρ2 + z2)1/2

]R
ρ=0

=
σ

2ε0

[
(R2 + z2)1/2 − z

]
Now the z component of the field is

Ez = −∂V
∂z

= − σ

2ε0

[
z

(R2 + z2)1/2
− 1

]
and we see that there is a z dependence so the field is not uniform.

The limit R� z corresponds to a point charge:

E(R� z) =
σ

2ε0

(
1− (1 +

R2

z2
)−1/2

)
ez =

σR2

4ε0z2
=

Q

4πε0z2
ez

The limit R� z gives the uniform field of an infinite plane of charge:

E(R� z) =
σ

2ε0
ez (10)

Only when R ≈ z do you need to consider the finite size of the disc!

Edge effects for a capacitor are limited to the regions where the gap distance is compa-
rable to the distance to the edges of the plates.
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EM 3 Section 7: Magnetic force, Currents and Biot Savart Law

7. 1. Magnetic force

The magnetic field B is defined by the force on a moving charge:

F = q(E + v ×B) (1)

This is the Lorentz Force Law. The second term is the magnetic force. The unit of
magnetic field is the Tesla (T) which is NA−1m−1. Actually this is a pretty big unit and a
Gauss = 10−4T.

7. 2. Current density and current elements

The first thing to note is that a moving charge by itself does not constitute a current. Instead
we need a moving density of charges. For the moment we will consider steady currents so
that at any point we have a constant density of charged particles moving past the point
(clearly we will need sources of current somewhere but let’s not worry about that for the
moment). Also we can have zero net charge but a steady current, if the densities of positive
and negative particles are the same but their velocities are different. A current consists of
n charges q per unit volume moving with average velocity v. These charges form a local
current density:

J = nqv (2)

The total current passing through a surface is obtained by integration:

I =
∫
A
J · dS (3)

where as usual dS points normal to the surface.

Units

The unit of current is the Ampere (A), which is a base SI unit, 1A = 1Cs−1.The unit of bulk
current density J is A/m2. We can also have surface current densities usually denoted K or
j ( units A/m) and line current densities usually denoted I (units A). Calling all of these
‘densities’ is a bit confusing since none has units of current per unit volume but that is the
way it is!

What we shall see is that steady currents play the key role in magnetism as do electric
charges in electrostatics, that is

Stationary charges ⇒ constant electric fields: electrostatics
Steady currents ⇒ constant magnetic fields: magnetostatics
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A current element, denoted here dI, has units A m and is a vectro

dI(r) = J(r)dV Current element in bulk

dI(r) = K(r)dS Current element on surface

dI(r) = I(r)dl Current element along a wire

Warning: you need to take care with current elements e.g. KdS 6= KdS since the left
hand side points in the direction of the current vector on the surface, but the right hand
side points normal to the surface. On the other hand Idl = Idl since a line current element
always points along the wire in the direction dl.

Figure 12: Diagram of rotating charged disc

Example: Rotating disc An insulating disc of radius R, carrying a uniform surface charge
density σ, is mechanically rotated about its axis with an angular velocity ω (in the ez
direction). As a result it has a current density on its surface:

K = σv = σω × r = σrωeφ (4)

Note that the current density increases linearly with r. Check that you understand how the
direction comes from the right hand rule.

Conductivity

The quantity σ (conductivity) or ρ (resistivity) describes the intrinsic conduction properties
of a bulk material in response to an electric field. The current density is:

J = σE ρ =
1

σ
(5)

Note that σ is a property of a particular material, and that it depends on temperature. A
typical value of σ for a metal is 6× 107 Ω−1m−1.

Remark: Actually (5) makes a crucial assumption that J and E are parallel which is not
necessarily the case for some non-isotropic materials where for example current can only flow
in certain directions. In such cases one needs a conductivity tensor.

The force on a steady current element is

dF = dI ×B (6)
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In particular, if the current element comes from a bulk current density dI = J dV we have:

dF = J ×B dV (7)

7. 3. Biot Savart Law and Calculation of Magnetic Fields

Just as a charge creates an electric field, so a current element at r′ creates a magnetic field
at a position r:

dB(r) =
µ0

4π

dI(r′)× ( ̂r − r′)
|r − r′|2

(8)

This is known as the Biot-Savart Law. The law was established expermentally; we shall
take it as our starting point. It plays the same role for magnetostatics as Coulomb’s law for
the electric field due to a point charge in electrostatics.

The constant µ0 is known as the permeability of free space:

µ0 = 4π × 10−7Hm−1 (9)

The direction of the field is perpendicular to dI(r′) and the vector from the current element
to the point r, ̂r − r′ . The direction can be remembered from the usual right hand rule for
vector products.

Note that superposition holds for magnetic fields, therefore the magnetic field can be
calculated by integration over current elements:

B(r) =
µ0

4π

∫ dI(r′)× ( ̂r − r′)
|r − r′|2

(10)

or by integration over a volume containing a distribution of current density:

B(r) =
µ0

4π

∫
V

J(r′)× ( ̂r − r′)
|r − r′|2

dV ′ (11)

7. 4. Magnetic Force between Currents

Substituting the Biot Savart Law for the magnetic field due to a current element into (6)

dF 12 =
µ0

4πr2
12

dI1 × (dI2 × r̂12) (12)

which corresponds to the force between a pair of current elements. Here r12 points
from dI1 to dI2 Equation (12) is also referred to as Biot-Savart law and is the equivalent of
Coulomb’s law for the force between two point charges.

If the current elements are due to current densities we have

dF 12 =
µ0

4πr2
J1 × (J2 × r̂)dV1dV2 (13)

where the force is attractive for parallel currents, and repulsive for antiparallel currents.
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Figure 13: Diagram for calculating B from an infinite straight wire

7. 5. Example of long straight wire

We consider a long straight wire which we choose to be along the z axis so that a point r′

on the wire is given by r′ = z′ez . We want to compute the field using (10). It is best to
use cylindrical polars: we choose the origin along the wire so that r is ⊥ to ez i.e. r = ρeρ
where ρ is the radial distance of the point from the wire.

Now dI = Idz′ez and dr′ = dz′ez so

dr′ × (r − r′) = dr′ × r = ρdz′eφ

and we find

B(r) =
µ0Iρ

4π
eφ

∫ ∞
−∞

dz′

|ρ2 + z′2|3/2

To evaluate the remaining integral we use substitution z′ = ρ tan θ so that dz′ = ρ sec2 θ dθ
and ρ2 + z′2 = ρ2 sec2 θ. Then we obtain

B(r) =
µ0I

4πρ
eφ

∫ π/2

−π/2
cos θdθ =

µ0I

2πρ
eφ

We now consider the force on a current element of a second parallel wire (at distance d

Figure 14: Two parallel wires separated by distance d

from the first) coming from the magnetic field B1(r) due to the first wire. Again we choose
coordinates so that this current element lies at r = ρeρ in cylindrical polars

dF = dI2(r)×B1(r) = I2dzez ×
µ0

2πd
I1eφ

= −µ0I1I2

2πd
dzeρ

There is an attractive force per unit length between two parallel infinitely long straight wires:
this is the basis of the definition of the Ampère.
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EM 3 Section 8: Divergence and Curl of B; Gauss and Ampere’s laws

8. 1. Divergence of B and Gauss’ Law for Magnetic Fields

We can write the Biot-Savart Law for B due to a bulk current density using the expression
for ∇(1/r) as

B(r) =
µ0

4π

∫
V
J(r′)× ( ̂r − r′)

|r − r′|3
dV ′ = −µ0

4π

∫
V
J(r′)×∇

(
1

|r − r′|

)
dV ′ (1)

Now since ∇ is with respect to the r coordinates and J(r′) depends on r′ we find

∇ ·
(
J(r′)×∇

(
1

|r − r′|

))
= J(r′) ·

(
∇×∇

(
1

|r − r′|

))
= 0

where the last equality follows since ‘curlgrad =0’

Therefore

∇ ·B = 0 (2)

This remarkable result is the second fundamental law of electromag (Maxwell II)

A magnetic field has no divergence which is a mathematical statement that
there are no magnetic monopoles

This means that there are no point sources of magnetic field lines, instead the magnetic fields
form closed loops round conductors where current flows.

Now the divergence theorem states that∫
V
∇ ·B dV =

∮
A
B · dS

Thus the net magnetic field through any closed surface A must be zero∮
A
B · dS = 0 (3)

which is sometimes referred to as Gauss’ law for magnetic fields.

8. 2. Magnetic Dipoles

Since there are no magnetic monoples we should identify what is the equivalent of an electric
dipole i.e. a magnetic dipole. It turns out this is a current loop. Consider a circular current
loop radius a carrying steady current I in the clockwise direction with axis in the ez direction

We consider the contribution to the magnetic field at r along the axis of the loop due to the
current element dI(r′) at r′ using the Biot-Savart law

dB(r) =
µ0

4π

dI(r′)× ( ̂r − r′)
|r − r′|2

(4)
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Figure 15: Simple current loop with axis along z axis

We choose coordinates so that r = zez , r′ = aeρ
′, dI = Idleφ

′ and |r − r′| = (z2 + a2)1/2.

Then
dI(r′)× ( ̂r − r′) = Idl(reρ

′ + aez)

Now we see that the dB is not along ez but when we integrate around the current loop the
perpendicular components cancel. Therefore we consider

dBz =
µ0Iadl

4π(z2 + a2)3/2

Note that this does not depend on the angle φ′ around the ring therefore when we integrate
over dl we simply get a factor 2πa and

Bz =
µ0Ia2

2(a2 + z2)3/2
(5)

At the centre of the loop (z = 0):

Bz =
µ0I

2a

At a large distance from the loop (z � a):

Bz '
µ0Ia2

2z3

To extend this calculation to an arbitrary position r (at all angles θ relative to the axis of
the loop) is tedious, but it can be shown that the field of a loop is a magnetic dipole field
i.e. in the far field limit of r � a one finds

Bdip(r) =
µ0

4πr3
[3(m · r̂)r̂ −m] (6)

where the magnetic dipole moment, m, is the product of the current and the vector area of
the loop:

m = Iπa2ez = IAez (7)

In fact this result holds for a small current loop of any shape and with magnetic dipole
moment, m, defined as

m = IA = I
∫

dS (8)

where a is the vector area of the loop
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The (ideal) magnetic dipole field has the same form as the (ideal) electric dipole field:

Br = µ0
2m cos θ

4πr3
Bθ =

µ0m sin θ

4πr3
(9)

However the ‘physical’ versions of electric and magnetic dipole look a bit different

Figure 16: Sketch of ideal and physical magnetic dipole lines Griffiths fig 5.55

It can be shown that: an external magnetic field creates a torque on a magnetic dipole:

T = m×Bext (10)

and the potential energy of the dipole in the field is:

U = −m ·Bext (11)

So one can think of a compass needle (magnetic moment along the needle) aligning with the
Earth’s magnetic field.

One could think of a magnetic dipole being composed of two monopoles (the ‘Gilbert Model’)
and this gives the correct results for torque and energy. However this picture is basically
wrong as the fundamental difference between a magnetic dipole and an electric dipole is that
it is impossible to separate the N and S poles of a bar magnet for example.

8. 3. What has this got to do with everyday magnets?

You might wonder what current loops have got to do with ordinary bar or fridge magnets.
The point is that in most atoms the electrons orbiting an atomic nucleus act as current
loops, so atoms can have magnetic dipole moments. Moreover even an electron has ‘spin’
which generates a magnetic moment.

8. 4. Curl of B and Ampère’s Law

Consider again the Biot-Savart law in form (1) and take the curl

∇×B(r) = −µ0

4π

∫
V
∇×

(
J(r′)×∇

(
1

|r − r′|

))
dV ′ (12)
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where the curl is with respect r coordinates so can be taken inside the integral which is over
r′ coordinates. Now using a product rule from lecture 1 and remembering that J(r′) does
not depend on the co-ordinates of r

∇×
(
J(r′)×∇

(
1

|r − r′|

))
= ∇2

(
1

|r − r′|

)
J(r′)− (J(r′) · ∇)∇

(
1

|r − r′|

)

= −4πδ(r − r′)J(r′)− (J(r′) · ∇)∇
(

1

|r − r′|

)
(13)

where we have used the now familiar result ∇2
(

1

r

)
= −4πδ(r). When we insert (13) back

into the integral (12), the second term can be shown to give zero since it can be written as
a ‘boundary term’ which vanishes (see tutorial). The first term in (13) however yields

∇×B = µ0J (14)

This is another fundamental law of electromagnetism i.e. Maxwell IV
The curl of a magnetic field around an axis is proportional to the component of the current
density along the axis.

To obtain an integral form of Ampère’s law we use Stokes’ theorem:∮
C
B · dl =

∫
A

(∇×B) · dS

Thus (14) becomes when we integrate over any an open surface bounded by closed loop C∫
A

(∇×B) · dS =
∮
C
B · dl = µ0

∫
A
J · dS

The integral of the magnetic field round a closed loop is related to the total
current flowing across the surface enclosed by the loop:

∮
C
B · dl = µ0I = µ0

∫
A
J · dS (15)

In a similar way to Gauss’ law in electrostatics, Ampère’s law is very useful for calculating
magnetic fields when there is a high degree of symmetry to the problem.

Example: An infinite wire of finitie radius a carries a uniform current density, J .
Outside the wire at radial distance ρ:

Bφ2πρ = µ0

∫
A
J · dS = µ0I

Bφ =
µ0I

2πρ
(16)

The field outside the wire drops off with distance as 1/ρ. This is a much easier derivation
than integrating the Biot-Savart law

Now consider the field inside the wire:

Bφ2πρ = µ0

∫
A
J · dS = µ0Jπρ

2 = µ0I
ρ2

a2

Bφ =
µ0Iρ

2πa2
(17)

The field inside the wire increases with radius.
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EM 3 Section 9: Applications of Ampère’s Law; Magnetic Vector Potential

9. 1. Applications of Ampère’s Law

∮
C
B · dl = µ0

∫
A
J · dS = µ0I (1)

Like Gauss’ law for electric fields Ampère’s law is the most efficient way of calculating
magnetic fields when the system has some symmetry. The symmetries which work are

• Infinite straight lines (see straight wire example from last lecture)

• Infinite planes (see next example of current sheet)

• Infinite solenoids (see tutorial 5.1)

• Toroids (see toroidal example below)

The difficult part is working out the direction of the magnetic field; after that Ampere’s law
readily gives the answer by choosing the Amperian loop appropriately

Field of an infinite slab of current (Griffiths Example 5.8)

An infinite sheet of conductor of thickness d, carries a uniform current density J parallel
to the surface of the sheet. Let us take ez normal to the sheet and choose ex to be along

Figure 17: Infinite current sheets and Amperian loops (Griffiths Fig 5.33)

the direction of the current. By B-S law B field has to be perpendicular to J . Now the
symmetry of the infinite plane means that any component of B in the ez direction cancels.
Thus the planar symmetry implies that B is in the ey direction i.e. ‖ to plane and ⊥ to
current.

We take the integral round a rectangular loop ‖ to the y–z plane loop of length l and height
h enclosing the sheet. The magnetic field outside the slab is then:

2|By|l = µ0Jld |By| =
µ0Jd

2
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This is a uniform magnetic field but note that the directions of the field on the two sides of
the sheet are opposite to each other!

B = −µ0Jd

2
ey for z > d/2 B = +

µ0Jd

2
ey for z < −d/2 (2)

The field inside the conducting sheet can also be calculated by choosing a loop in the y–z
plane that straddles the surface of the sheet. Then using the above result for the portion
outside yields that inside the slab

By = −µ0Jz |z| < d/2

where z = 0 is at the centre of the sheet. (Exercise)

Field of a toroid (Griffiths Example 5.10)

A toroid consists of a set of coils of radius R, carrying a current I, and formed into a larger
circle of radius a, so that they look like a doughnut. There are n coils per unit length around
the larger circle. The toroidal symmetry is a little subtle: there is clearly symmetry with

Figure 18: Doughnut shaped toroid (see Griffiths Fig 5.39 for more general toroid)

respect to rotation about z axis (no dependence on φ) but also since the current always flows
in the eρ − ez plane one can deduce from the BS law that the field must always be in the
eφ direction i.e. it is circumferential (since other components cancel).

Griffiths Ex 5.10 gives a proof of this for a toroid of arbitrary cross-section.

Then we take our Amperian loops to be circles ⊥ to ez . If the circle is not enclosed by the
toroid, the current which cuts the circle is zero. Therefore B = 0 outside the toroid

If the Amperian loop is a circle enclosed by the toroid of radial distance from z-axis ρ, then

Bφ2πρ = µ0n2πaI

Note that the rhs is constant since the same number of turns is always enclosed by such a
loop. The field inside the toroid coils is:

Bφ =
µ0nIa

ρ
(3)

Note that this is not uniform, but only depends on ρ the radial distance from the z-axis.
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9. 2. The Magnetic Vector Potential

Just as the theorem of 1.7 was the heart of Electrostatics the following theorem is the heart
of magnetostatics:

The following three statements concerning a vector field B over some region in space are
equivalent

1. ∇ ·B = 0 the vector field is “solenoidal”

2. B = ∇× A the vector field may be written as the curl of a vector potential

3. the surface integral of the field
∫
A
B · dS is independent of the shape of the surface for

a given boundary curve; a consequence is
∮
A
B · dS = 0 for any closed surface A

We do not prove all the equivalences (see Griffiths 1.6) but it is clear that 2. implies 1. since
‘div curl =0’

∇ ·B = ∇ · (∇× A) = 0 (4)

Thus starting from the key property of the magnetic field is ∇ · B = 0 (no monopoles), we
find from 2. that we may always write the magnetic field as the curl of a vector potential

B = ∇× A (5)

and 3. gives the integral form of Gauss’ law for magnetic fields

Using Stokes’ theorem

ΦB ≡
∫
A
B · dS =

∮
C
A · dl (6)

The magnetic flux through a surface is given by the integral of the magnetic vector potential
around the loop enclosing that surface.

9. 3. Poisson’s equation for the vector potential

Ampère’s law can be written in the form:

∇×B = ∇× (∇× A) = µ0J

Using a vector operator identity for “curlcurl” (see lecture 1) this becomes:

∇2A−∇(∇ · A) = −µ0J (7)

In the same way as we are free to choose the value of the scalar potential in electrostatics to
be V (∞) = 0, we are free to choose the divergence of the magnetic vector potential.

This property is known as gauge invariance.
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The choice of ∇ · A = 0 is known as the Coulomb gauge. It leads from (7) to Poisson’s
equation for the magnetic vector potential:

∇2A = −µ0J (8)

These are three equations, one for each of the components of the vector potential :

∇2Ax = −µ0Jx ∇2Ay = −µ0Jy ∇2Az = −µ0Jz (9)

Assuming that J goes to zero at infinity we can read off the solution using our knowledge of
the solution of Poisson’s equation

A(r) =
µ0

4π

∫ J(r′)

|r − r′|
dV ′ (10)

The equivalent of the expression the electrostatic potential from a charge can be written
down for the magnetic vector potential at r due to a current element Idl′ or JdV ′ at r′:

dA(r) =
µ0I(r′)dl′

4π|r − r′|
=
µ0J(r′)dV ′

4π|r − r′|
(11)

Note that the direction of dA is parallel to the current element whereas dB is perpendicular
by B-S law.

Example: vector potential of magnetic dipole (see tutorial)

A(r) =
µ0

4π

m× r̂
r2

(12)

9. 4. Pause for thought and summary of statics

Electrostatics: Stationary charges
∂ρ

∂t
= 0 are source of electric fields

∇ · E =
ρ

ε0
M1 (13)

Coulomb’s law (field due to point charge) leads to

∇× E = 0 MIII ⇒ E = −∇V
In turn the above lead to Poisson’s equation for V

∇2V = − ρ
ε0

Magnetostatics: Steady current loops
∂J

∂t
= 0 are source of magnetic fields.

∇ ·B = 0 MII (14)

Biot-Savart law (field due to cuurent element) leads to

∇×B = µ0J MIV and B = ∇× A
In turn in the Coulomb gauge the above lead to a vector Poisson equation for A

∇2A = −µ0J

In the following we shall see how MIII and MIV need to be modified when time-varying
fields are present.
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EM 3 Section 10: Electromotive force and Faraday’s Law

10. 1. emf

So far we have considered steady currents and in particular steady current loops. However
they actually don’t exist! (at least not without a little help). To see this let’s assume Ohm’s
law J = σE holds. Then∮

C
J · dr = σ

∮
C
E · dr = σ

∫
S
∇× E · dS = 0

since ∇×E = 0. Therefore I must be zero for the loop. The way out is to have a “battery”
somewhere in the loop which causes a jump in the electric potential so that the integral from
one terminal of the battery to the other

E =
∮
E · dl (1)

where E = ∆V is the potential supplied by the battery. This is known confusingly as an
“electromotive force” (emf) (although it’s not a force it’s electrostatic potential difference).

Then
∮
J · dl = IL = σ∆V and we get the elementary form of Ohm’s law V = IR with

R = L/σ and L the length of the loop.

Generally we can express the emf by considering the force on a unit charge f = f
s
+E where

f
s

is the force due to some external source ( e.g. battery) and E is the force from the electric
field. Then

E =
∮
C
f · dl =

∮
C
f
s
· dl

10. 2. Induced emf

Consider a rectangular loop of conducting wire l moving with velocity v perpendicular to
a uniform magnetic field (into the page). The charges in the segment of the loop (ab)

Figure 19: Rectangular conducting loop moving in magnetic field (Griffiths Fig.7.10)

perpendicular both to B and to v experiences a force in the ab direction

f
mag

= qv ×B E =
∮
f
mag
· dl = vBh (2)
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where h is the length from a to b.

Aside: you may worry that a magnetic force f
mag

= qv × B should do no work! —this is

because if the charge q moves dl = vdt then dWmag = f
mag
· dl = q(v × B) · vdt = 0. So

actually it is the person pulling the loop that is doing the work to produce a current i.e.
when the current flows in ab it creates a magnetic force df

mag
= dI × B to the left on an

element of the wire and this must be balanced by a pulling force to the right.

Now consider the magnetic flux through the loop

ΦB =
∫
B · dS = BA = Bhx

where A is the area and the flux intergal is simply current× area here becuase dS ‖ B in
this example.

dΦB

dt
= Bh

dx

dt
= −Bhv

Therefore comparing with (2) we see

E = −dΦB

dt
(3)

This result actually holds for general loops, B and v (for proof see Griffiths fig. 7.13).
It is known as the flux rule or Faraday’s law of induction. E is known as an induced
electromotive force (emf).

10. 3. Faraday’s Law

As we have seen in (3) the induced emf can be understood in terms of the time variation of
the magnetic flux through the current loop. Note that the magnetic flux φB =

∫
B · dS can

be changed by varying any of |B|,
∫

dS or the angle between B and dS.

Figure 20: Summary of Faraday’s experiments (Griffiths Fig. 7.20)

In a famous seris of experiments Faraday found that an emf can be induced by:

1. Pulling a current loop through a magnetic field.

2. Moving the magnet and area containing a field to the left

3. Changing the strength of the field
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N.B. In case 2. we clearly see from relativity that the two scenarios must yield the same
result i.e. in both cases the loop moves relative to the magnet with the same velocity. But
actually this has enormous consequences for the physics: in case 2 the loop is stationary
therefore, for the charges to feel a force, there must be an electric field present i.e. we
deduce that the changing magnetic field induces an electric field.

10. 4. Differential form of Faraday’s Law

Let us take Faraday’s law (3) and use our definition of emf (1) to find∮
E · dl = − d

dt

∫
B · dS = −

∫ ∂B

∂t
· dS

where in the last equality we have assumed that only the magnetic field is changing

Now use Stokes’ theorem∮
C
E · dl =

∫
A

(∇× E) · dS = −
∫
A

∂B

∂t
· dS

which holds for an arbitrary surface A implying

∇× E = −∂B
∂t

(4)

This is the full third fundamental law of electromagnetism MIII.
The curl of an electric field around an axis is proportional to the time variation of the
magnetic field along the axis.

10. 5. Lenz’s Law

Determing the sign of the flux in Faraday’s law often proves troublesome. But there is a
simple rule known as Lenz’s Law that gives the right answer.

The induced emf always acts to oppose the change that causes it or Nature abhors
a change in flux!

• In the case of the moving current loop at the start of this lecture, there is a force on
the current in the wire f = IlB which acts to decelerate the wire.

• Additional work has to be done to move a current loop into or out of a magnetic field,
or through a non-uniform field. This is to overcome the induced emf.

• For a rotating current loop (see next lecture), there is a torque m × B due to the
magnetic moment of the loop. This always acts to slow down the rotation.

• A time-varying magnetic field produces eddy currents in conducting loops.
The dipole fields of these loops act to reduce the time-variation.
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10. 6. Faraday’s Law in terms of Magnetic Vector Potential

The two equations:

∇× E = −∂B
∂t

B = ∇× A

can be combined to give:

∇× E = − ∂

∂t
(∇× A)

A solution to this equation is clearly:

E = −∂A
∂t

(5)

The electric field due to induction can be expressed as the time-derivative of the magnetic
vector potential.

The general solution is obtained by adding in a static electric field, which is expressed as the
gradient of the scalar potential:

E = −∂A
∂t
−∇V (6)

This does not change the form of Faraday’s law because “curlgrad = 0 ”.

Note that the equation E = −∇V only applies to electrostatic situations when there are
no time-varying fields.

Thus we can think of two kinds of electric field: those coming from a static charge distribution
and which may be written as E = −∇V ; those coming from a changing magnetic field and

which may be written E = −∂A
∂t

.
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EM 3 Section 11: Inductance

11. 1. Examples of Induction

As we saw last lecture an emf can be induced by changing the area of a current loop in a
magnetic field or moving a current loop into or out of a magnetic field.

Here we consider some common examples of rotation of a current loop about its axis in a
uniform magnetic field.

AC generator

A generator has a coil of area A rotating about its diameter in a uniform magnetic field with
angular velocity ω: In this case it is only the angle between the field and the loop that is

Figure 21: AC generator

varying:
ΦB = AB cosωt (1)

E = −dΦB

dt
= −ABω sinωt (2)

This system generates an alternating current (AC) with frequency ω. The current is π/2 out
of phase with the rotation, so the peak current is obtained when the flux is zero, i.e. when the
loop is parallel to the magnetic field. There is zero current when the loop is perpendicular
to the field.

Rotating disc of charge

An insulating disc with a uniform surface charge rotates around its axis. There is a uniform
magnetic field parallel to the axis of the disc.

The force on an element of charge, q, on the disc at radius, r, is:

dF = qvBer = qrωBer (3)

where er is the radial basis vector on the disc. This magnetic force is equivalent to a radial
electric field:

E ′ = F/q = rωBer (4)
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and there is an induced emf between the centre and outer radius of the disc:

E =
∫
E ′ · dr =

ωBa2

2
(5)

This emf acts outwards to try and move the charge to the outside of the disc. If the disc
were a conductor this would actually happen.

So what happens to the flux rule for this type of problem? Basically it is not clear if there is
any current loop to consider a flux through. Thus, as it stands, the flux rule E = −dΦB/dt
only works when there is a fixed current loop.

11. 2. Mutual Inductance

Consider two current loops I1,I2 at rest. The current I1 will lead to a magnetic field B1

which will lead to a magnetic flux through loop 2

Φ2 =
∫
B1 · dS2 ≡M21I1 (6)

M21 is the mutual inductance of the two loops; it relates the flux through loop 2 to the
current in loop 1.

Now let us use the vector potential and Stokes’ theorem to obtain an explicit form for M12

Φ2 =
∫

(∇× A1) · dS2 =
∮

2
A1 · dl2

=
µ0I1

4π

∮
1

∮
2

dl1 · dl2
|r1 − r2|

where we have used the formula for the vector potential from section 9 equation (10). Thus

M12 =
µ0

4π

∮
1

∮
2

dl1 · dl2
|r1 − r2|

(7)

where the integrals are taken round both current loops. This is known as the Neumann
formula but it is not very useful for most practical applications. What it does reveal is that

M12 = M21 = M (8)

which is a remarkable result i.e the flux through 1 when there is current I in 2 is the same
as the flux through 2 when there is current I in 1 whatever the geometry of the loops!
The relative geometry of the two conductors enters through M which is a purely geometric
quantity (a double integral around the loops)

Now let us introduce time-dependence and vary the currentI1 in 1. The changing flux through
2 then gives rise to an emf

E = −dΦ2

dt
= −M dI1

dt

By Lenz’s law this emf opposes the change in current.
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11. 3. Self-Inductance

The above discussion similarly applies to the source loop itself i.e. a changing current in a
loop induces a “back emf” which opposes the change in current.

The self-inductance of the loop, L, is defined as the ratio of the induced emf to the current
change:

E = −L
dI

dt
(9)

It can also be written as:

ΦB = LI (10)

The unit of inductance is the Henry (H), which is 1 Vs/A.

Inductance of a Solenoid

For a long solenoid (length l, radius a, with n loops per unit length) there is a uniform
magnetic field along the axis of the solenoid:

Bz = µ0nI (11)

This result can be shown using Ampère’s Law (see tutorial 5.1).

The flux through all nl loops is:

ΦB =
∫
A
B · dS = µ0nIπa2nl

and the self-inductance of the solenoid is:

L = µ0n
2πa2l = µ0n

2V (12)

11. 4. Energy Stored in Inductors

The work done to create a current in a loop against the induced emf is related to the self-
inductance L:

dUM
dt

= −EI = LI
dI

dt

Integrating this gives:

UM =
1

2
LI2 (13)

For two coils with a mutual inductance:

UM =
1

2
L1I1

2 +
1

2
L2I2

2 +M12I1I2

Example of solenoid For a long solenoid the self inductance and magnetic field are:

L = µ0n
2πa2l B = µ0nI
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The energy stored in the solenoid is:

UM =
1

2
µ0n

2I2πa2l =
1

2µ0

|B|2πa2l

This can be written in terms of the energy density associated with the magnetic field:

dUM
dV

=
|B|2

2µ0

Note that this treatment of the energy density of a magnetic field in an inductor is very
similar to the treatment of the energy density of an electric field in a capacitor.

We can write the result (13) in a form that uses the magnetic vector potential and the
current density. As before the flux is given by

ΦB =
∫

(∇× A) · dS =
∮
A · dl

Thus using the definition of L

LI =
∮
A · dl

and we find for a current loop that

UM =
I

2

∮
A · dl =

1

2

∮
A · Idl

The generalisation to volume currents is

UM =
1

2

∫
A · J dV (14)

We can develop (14) further by using Ampère’s law and a product rule from lecture 1

µ0A · J = A · (∇×B)

= B · (∇× A)−∇ · (A×B)

= B ·B −∇ · (A×B)

Consequently

UM =
1

2µ0

[∫
B2dV −

∫
∇ · (A×B) dV

]
=

1

2µ0

[∫
B2dV −

∮
S
(A×B) · dS

]
The second intergal is a boundary term which vanishes when we take the volume over all
space, therefore

UM =
1

2µ0

∫
allspace

|B|2dV (15)

In a similar way to the electrostatic energy UE, we can think of the magnetic energy be-
ing stored either in the (localised) current distribution (14) or throughout all space in the
magnetic field (15).
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EM 3 Section 12: The Displacement Current

In this lecture we complete the discussion of the fundamental laws of electromagnetism, and
introduce electromagnetic waves for the first time.

12. 1. Continuity equation

Consider a conserved quantity for example electric charge—experimentally it is known that
electric charge is always conserved.

We consider a volume V and the rate of change of the total charge Q in that volume. In the
case where there is no creation or spontaneous loss of charge inside the volume we have

−∂Q
∂t

=
∮
A
J · dS (1)

where the right hand side is a flux integral which expresses the total current out of the
volume, therefore the left hand side has a negative sign.

Writing the left hand side as a volume integral over charge density ρ and the right hand side
as a volume integral by virtue of the divergence theorem gives

− ∂

∂t

∫
V
ρ dV =

∫
V
∇ · J dV

Since this must hold for an arbitrary volume V we deduce the differential form:

∂ρ

∂t
= −∇ · J (2)

The divergence of the current density at any point is proportional to the rate of change of
the charge density at that point.

This is continuity equation which is a statement of local conservation (here for charge).
In fact it holds for any conserved quantity (mass, energy, electric charge, momentum, and
even probability) and is one of the most general and useful equations in physics.

12. 2. The Displacement Current

Let us return to the differential form of Ampère’s law

∇×B = µ0J (3)

and take the divergence of both sides:

∇ · ∇ ×B = µ0∇ · J

Now since the divergence of a curl is always zero we find

∇ · J = 0
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This result is inconsistent with the continuity equation since generally (unless the charge
distribution is static)

∂ρ

∂t
= −∇ · J 6= 0

To satisfy the continuity equation generally we need to modify Ampère’s law (MIV) by the
addition of a displacement current term to go along with J i.e. we want to have when
we take the divergence of the modified MIV

∇ · (∇×B) = µ0

(
∇ · J +

∂ρ

∂t

)
= 0 (4)

Using Gauss’ law MI we can replace ρ with the divergence of the electric field:

∇ · (∇×B) = µ0

(
∇ · J + ε0

∂

∂t
(∇ · E)

)

The order of the time derivative and the divergence of the electric field can be reversed, and
the divergence operation removed from all terms to leave:

∇×B = µ0

(
J + ε0

∂E

∂t

)
(5)

This is the Ampère-Maxwell law (MIV) which holds for both static and time-varying charge
distributions and fields.
Maxwell’s stroke of genius was to include the displacement current term—often called the
Maxwell correction—albeit for different reasons than we have given here! In any case we
conclude that
The effect of a time-varying electric field is to produce an additional contribution to the curl
of the magnetic field.

Is the displacement actually a current? Answer is not really (see next subsection) but it
does, of course, have the dimensions of a current.

12. 3. Capacitor Paradox and Resolution

Consider the circuit in the figure which illustrates a parallel plate capacitor charging up

Figure 22: Capacitor paradox (Griffiths fig 7.42)

and current I(t) flowing in the wire. If we want to compute B by taking an Amperian loop
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in the form of a circle around the wire (outside of the capacitor) then the surface S that we
should take to compute ∮

B · dl = µ0

∫
S
J · dS

does not appear to be well-defined e.g. taking S = S1 as the surface of the disc in the plane
of the loop gives

∫
S1
J ·dS = I; but taking S = S2 as an extended surface which goes through

the gap between the plates and which does not cross the wire gives
∫
S2
J ·dS = 0 since there

is no current flowing between the plates. But really Ampère’s law should hold independent
of the surface bounded by the fixed loop.

If, on the other hand, we consider MIV with the Maxwell correction we replace the old
Ampère’s law in integral form by the new version

∫
S
(∇×B) · dS =

∮
B · dl = µ0

∫
S

(
J + ε0

∂E

∂t

)
· dS

Now we know (at least quasistatically) that between the plates of the capacitor, E is normal

to the plates and |E| =
Q

ε0A
. Therefore ε0

∂E

∂t
is a vector with magnitude Ė =

I

A
. Thus

inside the plates ε0

∫
S2

∂E

∂t
·dS = I and gives the same contribution as does

∫
S1

J ·dS outside

the plates—see tutorial sheet 6. Thus the capacitor paradox is resolved. Also we see that the
diplacement current is not a real current as no current flows between the capacitor plates.

One final thing to notice about the displacement current term is that, due to the factor
ε0 ' 9× 10−12C2/NM2, it is typically much smaller than the current term. Thus when there
is a current flowing the current term dominates the displacement current term.

12. 4. Maxwell’s Equations

The laws of electromagnetism are summarised in four differential equations (MI-IV) known
as Maxwell’s equations:

∇ · E =
ρ

ε0
(6)

∇ ·B = 0 (7)

∇× E = −∂B
∂t

(8)

∇×B = µ0

(
J + ε0

∂E

∂t

)
(9)

MII and MII are Gauss’ Laws for electric and magnetic fields
MIII is Faraday’s law of induction
MIV is Ampère-Maxwell law including the displacement current

In the electrostatic limit Poisson’s equation is obtained from MI & MIII:

∇2V = − ρ
ε0

when
∂B

∂t
= 0
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In the magnetostatic limit Poisson’s equations for the magnetic vector potential are obtained
from MII & MIV:

∇2A = −µ0J when
∂E

∂t
= 0

The continuity equation is obtained from MI & MIV:

∇ · J = −∂ρ
∂t

(10)

12. 5. Solution of Maxwell’s Equations in Vacuo

In a vacuum there are no charges present:

ρ = 0 J = 0 (11)

We take the curl of MIII

∇× (∇× E) = −∂(∇×B)

∂t
which inserting MIV yields

∇× (∇× E) = −ε0µ0
∂2E

∂t2

Similarly taking the curl of MIV leads to

∇× (∇×B) = −ε0µ0
∂2B

∂t2

Now we make use of the vector identity (to be memorised) for a vector field F :

∇× (∇× F ) = ∇(∇ · F )−∇2F (12)

In the absence of charges MI becomes ∇ · E = 0 and from MII ∇ · B = 0, we are left with
two wave equations:

∇2E = ε0µ0
∂2E

∂t2
(13)

∇2B = ε0µ0
∂2B

∂t2
(14)

Thus we have decoupled the four (first order) Maxwell’s equations for B and E in the vacuum,
at the price of now having second order equations. But we know that the solution of these
second order wave equations (to be revised next lecture) will be electromagnetic waves. The
velocity of the electromagnetic waves is the speed of light:

c2 =
1

ε0µ0

= (3× 108ms−1)2 (15)

Maxwell’s equations predict that light, radio waves, X-rays etc. are all types of
waves associated with oscillating electric and magnetic fields in a vacuum.

N.B. There are no charges present in a vacuum, and the waves propagate without the presence
of matter!

50



EM 3 Section 13: Description of Electromagnetic Waves

13. 1. Recap of wave equations

Let us recall (see Mathematics for Physics 4 and Physics 2A) the wave equation in 1d (i.e.
one spatial dimension x and one time dimension t) for a scalar field u

∂2u

∂x2
=

1

c2

∂2u

∂t2
(1)

Now, as can readily be checked by substitution into (1) the general solution is any function
f of the form

u(x, t) = f(kx− ωt) (2)

where the wave velocity c is given by

c =
w

k
(3)

A convenient solution of special interest is

f = A exp i(kx− ωt) = A cos(kx− ωt) + iA sin(kx− ωt) (4)

These are sinusoidal waves and A is the constant amplitude (which may be complex) N.B.
the real (cosine) and imaginary (sine) parts are independent solutions. Moreover it is a
monochromatic wave since there is a single angular frequency ω. These are the basis of
Fourier methods where we build up waves of arbitrary shape by superposition of sines and
cosines

If for physical reasons we want to get a real solution from (4) we simply take the real part

u(x, t) = Re [A exp i(kx− ωt)]
= ReA cos(kx− ωt)− ImA sin(kx− ωt) (5)

Important things to remember are : k is the wavenumber; the angular frequency is ω = 2πν
where ν is the frequency; the wavelength is λ = 2π/k; the whole wave proceeds to the right
with speed c, but at any fixed x the wave oscillates with period T = 2π/ω = 2π/kc.

The 1d equation (1) generalises easily to 3d

∇2u =
1

c2

∂2u

∂t2
(6)

where the second derivative w.r.t. x has been replaced by the Laplacian operator.

The solution (2) generalises to

u(r, t) = f(k · r − ωt) (7)

where the wavevector k = (kx, ky, kz) and the velocity is again

c =
w

k
(8)
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where k = |k|. We can also write (7) as

u(r, t) = g(n̂ · r − ct) (9)

where n̂ is the unit vector in the direction of k.

13. 2. Plane Waves

The generalisation of the 1d sinusoidal solution (4) is to the 3d plane wave solution

u(r, t) = A exp i(k · r − ωt) (10)

The is called a plane wave because it takes the same (complex) value whenever

k · r = ωt+ constant (11)

which at any fixed t is the equation of a plane with normal in the k direction.

To see that (2) is a solution to (12) note that

∇ exp ik · r =

[
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂x

]
exp i(kxx+ kyy + kzz)

= ik exp ik · r

and

∇2 exp ik · r = ∇ · ∇ exp ik · r = i∇ · (k exp ik · r) = ik · ∇ exp ik · r = −k2 exp ik · r

where we used the product identity ∇ · (kf) = f∇ · k + k · ∇f = k · ∇f since k is constant.

Also
∂2 exp i(k · r − ωt)

∂t2
= −ω2 exp i(k · r − ωt)

Finally we can generalise to the 3d wave equation for a vector field F

∇2F =
1

c2

∂2F

∂t2
(12)

for which a plane wave solution is

F = F 0 exp i(k · r − ωt) (13)

where F 0 is a constant (complex) vector. The key things to remember with this plane wave
solution are

∇ · F = ik · F (14)

∇× F = ik × F (15)

∇2F = −k2F (16)
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13. 3. Electromagnetic Plane Waves

Previously we saw that in vacuo Maxwell’s equations with ρ = 0, J = 0 read

∇ · E = 0 (17)

∇ ·B = 0 (18)

∇× E = −∂B
∂t

(19)

∇×B = µ0ε0
∂E

∂t
(20)

and reduce to the decoupled wave equations

∇2E = ε0µ0
∂2E

∂t2
(21)

∇2B = ε0µ0
∂2B

∂t2
(22)

Clearly we have plane solutions

E = E0 exp i(k · r − ωt) B = B0 exp i(k · r − ωt) (23)

moving at the speed of light c = ω/k =
1

√
ε0µ0

. However Maxwell’s equations imply more

constraints on our plane wave solutions. First MI, MII imply

ik · E0 = 0 ik ·B0 = 0

i.e. E0 and B0 and hence E and B are perpendicular to the direction of propagation k. That
is, the wave is transverse.

It is usually convenient to take the direction of propagation k in the ez direction;

k = kez (24)

therefore E0 and B0 lie in the x–y plane. Substituting (3) in MIII we find

ik × E0 exp i(k · r − ωt) = iωB0 exp i(k · r − ωt)

or more compactly

B0 =
k

ω
(ez × E0) (25)

Now since ez and E0 are orthogonal we can take magnitudes

|B0| =
k

ω
|E0| (26)

Now we should choose the directions of B0 and E0. (12) tells us that The magnetic field
is perpendicular to the electric field, and both are perpendicular to the direction
of propagation of the wave.

There are two comon polarisation states which can be defined in various ways:
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• Linearly (or plane) polarized - direction of E is always in x or y direction.

• Circularly polarized - direction of E rotates clockwise or anticlockwise around the z
axis in the x–y plane.

An unpolarised electromagnetic wave has a random direction for E as a function of z.

13. 4. Linear (Plane) Polarisation

Let us first consider the case where B0 and E0 are real. Then, since they lie in the x–y
plane it is conventional to take E0 = E0ex and B0 = B0ey. This is referred to as linear
polarisation in the x direction i.e. the electric field is always in the x direction and magnetic
field is always in the y direction and k is in the z direction as usual. Polarisation in the y
direction would have E0 = E0ey, B0 = −B0ex. More generally we can take E0 = E0n̂

Figure 23: Plane polarisation in x direction (Griffiths fig 9.10)

E0 · ex = E0n̂ · ex = E0 cos θ

where n̂ is the polarisation vector and θ is the polarisation angle.

13. 5. Circular Polarisation

Now consider taking E0 as a complex vector

E0 =
E0√

2
(ex ± iey)eiφ (27)

Then we find that the real part of E is given by

ReE =
E0√

2

[
ex cos(k · r − ωt+ φ)∓ ey sin(k · r − ωt+ φ)

]
(28)

The minus sign in (27) implies that the polarisation vector rotates anticlockwise about the
ez : i.e. at time ωt = k ·r+φ, ReE is in the ex direction but as time increases the polarisation
vector rotates towards −ey. This also referred to left circular polarisation or positive helicity

Likewise the plus sign in (27) implies that the polarisation vector rotates clockwise about
the ez This is referred to as right circular polarisation or negative helicity.
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EM 3 Section 14: Electromagnetic Energy and the Poynting Vector

14. 1. Poynting’s Theorem (Griffiths 8.1.2)

Recall we saw that the total energy stored in electromagnetic fields is:

U = UM + UE =
1

2

∫
allspace

(
1

µ0

B2 + ε0E
2

)
dV (1)

Let us now derive this more generally. Consider some distribution of charges and currents.
In small time dt a charge will move vdt and, according to the Lorentz force law, the work
done on the charge will be

dU = F · dl = q(E + v ×B) · vdt = qE · vdt

where as usual the magnetic forces do no work. Now let q = ρdV (usual definition of
charge density) and ρv = J (usual definition of current). Then dividing through by dt and
integrating over a volume V containing the charges, we find that the rate at which work is
done (i.e. the power delivered to the system) is

dU

dt
=
∫
V
E · J dV (2)

Thus E · J is the power delivered per unit volume. Now use MIV to express

E · J =
1

µ0

E · (∇×B)− ε0E ·
∂E

∂t

Furthermore we can use a product rule from lecture 1 to write

E · (∇×B) = B · (∇× E)−∇ · (E ×B)

= −B · ∂B
∂t
−∇ · (E ×B)

where we used MIII in the last line. Putting it all together, and noting

B · ∂B
∂t

=
1

2

∂B2

∂t
E · ∂E

∂t
=

1

2

∂E2

∂t
,

yields

E · J = −1

2

∂

∂t

(
ε0E

2 +
1

µ0

B2

)
− 1

µ0

∇ · (E ×B)

Finally we can integrate over the volume V containing the currents and charges and use the
divergence theorem on the second term to obtain from (9)

dU

dt
= − ∂

∂t

∫
V

1

2

(
ε0E

2 +
1

µ0

B2

)
dV − 1

µ0

∮
S
(E ×B) · dS (3)

Let us now examine each term in Poynting’s Theorem (10): the left hand side is the
power delivered to the volume i.e. the rate of gain in energy of the particles; the first term
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on the right hand side is the rate of loss of electromagnetic energy stored in fields within the
volume; the second term is the rate of energy transport out of the volume i.e. across the
surface S.

Thus Poynting’s theorem reads: energy lost by fields = energy gained by particles+ energy
flow out of volume. Hence we can identify the vector

S =
1

µ0

E ×B (4)

as the energy flux density (energy per unit area per unit time) and it is known as the
Poynting vector (it ‘Poynts’ in the direction of energy transport).

Also we can write Poynting’s theorem as a continuity equation for the total energy U =
Uem + Umec. The left hand side of (10) is the rate of change of mechanical energy thus

d(Uem + Umec)

dt
= −

∮
S
S · dA

(to avoid a nasty clash of notation with S as Poynting vector we use dA rather than dS
as vector element of area). As usual, expressing energy as a volume over energy densities
uem,umec and using the divergence theorem on the right hand side we arrive at

∂

∂t
(uem + umec) = −∇ · S (5)

which is the continuity equation for energy density. Thus the Poynting vector represents the
flow of energy in the same way that the current J represents the flow of charge.

14. 2. Energy of Electromagnetic Waves (Griffiths 9.2.3)

As we saw last lecture a monochromatic plane wave in vacuo propagating in the ez direction
is described by the fields:

E = exE0 cos(kz − ωt) B = eyB0 cos(kz − ωt) (6)

where

B0 =
E0

c
The total energy stored in the fields associated with the wave is:

U = UE + UM =
1

2

∫
V

(
B2

µ0

+ ε0E
2

)
dV

Now since |B| = |E|
c

and c = 1/
√
µ0ε0 we see that the electric and magnetic contributions to

the total energy are equal and the electromagnetic energy density is (for a linearly polarised
wave)

uEM = ε0E
2 = ε0E

2
0 cos2(kz − ωt)

The Poynting vector becomes for monochromatic waves

S =
1

µ0

(E ×B) = cε0E
2
0 cos2(kz − ωt)ez = uEMcez
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That S is just the energy density multiplied by the velocity of the wave cez as it should be.
Generally

S = uEMck̂

N.B To compute the Poynting vector is is simplest to use a real form for the fields B and
E rather than a complex exponential representation.

The time average of the energy density is is defined as the average over one period T of the
wave

〈uEM〉 =
ε0E

2
0

T

∫ T

0
cos2(kz − ωt)dt

=
ε0E

2
0

T

T

2
=

1

2
ε0E

2
0 =

1

2

B2
0

µ0

The energy density of an electromagnetic wave is proportional to the square of the amplitude
of the electric (or magnetic) field.

14. 3. Example of discharging capacitor

Consider a discharging circular parallel plate capacitor (plates area A) in a circuit with a

Figure 24: Discharging capacitor in a circuit with a resistor

resistor R. Ohm’s law gives

Vd =
Q

C
= IR

or

I = −dQ

dt
=

Q

RC
⇒ Q = Q0e−t/RC I = − Q0

RC
e−t/RC

Now assume ‘quasistatic’ approximation that we can treat the fields as though they were
static:

E = − Q

Aε0
n̂ = − Q

Aε0
e−t/RC

We take the normal to the plates (direction of E) is n̂. Now we can compute B through
Ampère-Maxwell noting that the cylindrical symmetry implies that B is circumferential.
The Amperian loop is a circle radius r between the capacitor plates where J = 0

∮
B · dl = µ0

∫
S

(
J + ε0

∂E

∂t

)
· dS = −µ0πr

2ε0
∂

∂t

(
Q

Aε0
e−t/RC

)
=
µ0I(t)

2A
r
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so

B =
µ0I(t)r

2A
eφ

The Poynting vector is given by

S =
1

µ0

E ×B = − Q

Aε0
e−t/RC µ0I0

r

2A
e−t/RCez × eφ =

I2
0CR

2A2ε0
re−2t/RCer

Thus the Poynting vector points radially out of the capacitor and this is the direction of
energy flow.

14. 4. Momentum of electromagnetic radiation

Let us reinterpret the Poynting vector from a quantum perspective. Due to wave-particle
duality, radiation can be thought of as photons travelling with speed c with energy

ε = h̄ω = hν

The momentum of a single photon

p = h̄k =
ε

c
k̂

For n photons per unit volume travelling at speed c we can interpret the average Poynting
vector as average energy density nε multiplied by velocity vector ck̂

〈S〉 = nεck̂ = 〈uEM〉ck̂

Again thinking of the energy transport as effected by photons, we must have an accompa-
nying momentum flux P̃

P̃ is defined as the momentum carried across a plane normal to propagation, per unit area
per unit time

For each photon p = ε/c (along k̂) so

P̃ = S/c

If light strikes the absorber (normal incidence) momentum is absorbed, this creates a force
per unit area equal to the incoming (normal) momentum flux

This causes radiation pressure

prad = P̃ · n̂ = S/c ⇒ prad = 〈uEM〉

If light is reflected not absorbed so twice the momentum is imparted, prad doubles but so
does 〈uEM〉, and this result still holds.

To understand radiation pressure classically let’s go back to the example of an x polarised
wave propagating in ez direction: the electric field moves charges, on the surface the radiation
strikes, in the x direction; then the Lorentz force qv×B (with v in the x direction and B in
the y direction) is in the ez direction and creates the pressure.

Above is for a collimated light beam (i.e. single direction) The other extreme is “diffuse
radiation” = light bouncing around in all directions; this gives instead

prad = 〈uEM〉/3

(factor 1/3 as in kinetic theory of gases)
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EM 3 Section 15: Dielectric Materials

15. 1. Overview

So far we have developed Maxwell’s equations and they offer a complete and general de-
scription of electrodynamics. However the input we have to make is to define the charge and
current densities ρ and J with microscopic precision. In the real world (i.e. not in vacuo)
this would be a huge task as materials are made up of atoms/molecules which all contain
charge distributions and currents (through electronic orbits). This as the atomic level of
description.

Instead we want to develop a macroscopic description of materials in terms of smoothly
varying quantities: these turn out to be the density ρf and current Jf of free charges.
The bound charges which are bound up in the atomic structure are dealt with by defining
new fields D the Electric Displacement Field and H the Auxiliary (magnetic) Field
Then we end up with a complementary macroscopic form of Maxwell’s equations. Although
it may seem annoying to have to learn a second set of Maxwell’s equations, they are in some
ways simpler than the microscopic ones.

15. 2. Dielectric Materials

Roughly speaking we can classify materials as conductors or dielectrics (insulators). A
perfect conductor will have an ‘unlimited’ supply of free charges whereas at the other ex-
treme a perfect dielectric will have no free charges and instead all charges are bound up in
atoms/molecules.

Figure 25: Polarization of Dipoles in a Dielectric

Let us consider the effect of an electric field on a dielectric. The field will induce a dipole
moment in two ways

• the charge distribution of some atoms/molecules is distorted

• already polar molecules (e.g. H2O) will tend to align with the external field (rotation)

These effects polarize the material and result in an induced dipole moment for each atom

〈p
atom
〉 = αE (1)
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where α is the atomic polarizability. We take an average in (1) as an atom’s dipole moment
will not be constant due to thermal fluctuations. All these atomic dipole moments give rise
to the dipole moment per unit volume P or Polarization

P = n〈p
atom
〉 (2)

Here n is the number of atoms per unit volume and 〈p
atom
〉 is the average atomic dipole

moment induced by the field

Then we can write the dipole moment for some some volume dV as

dp = P dV (3)

Let us now consider the field due to the polarized molecules. Recall that for a single dipole
at r′ the potential at r is

V (r) =
1

4πε0

(r − r′) · p
|r − r′|3

This generalises by superposition to the potential due to the Polarization field P (r′)

V (r) =
1

4πε0

∫
V

(r − r′) · P (r′)

|r − r′|3
dV ′

We now note a usual identity but this time for the gradient wrt the primed coordinates

∇′
(

1

|r − r′|

)
=

(r − r′)
|r − r′|3

Then we perform ‘integration by parts’ using the divergence theorem

V (r) =
1

4πε0

∫
V
P (r′) · ∇′

(
1

|r − r′|

)
dV ′

=
1

4πε0

[∫
V
∇′ ·

(
P

|r − r′|

)
dV ′ −

∫
V

1

|r − r′|
∇′ · PdV ′

]

=
1

4πε0

∮
S

P · dS
|r − r′|

− 1

4πε0

∫
V

1

|r − r′|
(∇′ · P ) dV ′

Now the first term on the right hand side is equivalent to the potential due to a surface
charge distribution on S i.e. P · dS → σdS or

σb = P · n̂ (4)

The second term on the lhs is equivalent to the potential due to a volume charge distribution
ρb which is given by

ρb = −∇ · P (5)

The subscript b refers to the fact the charges are bound (to the atoms)
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15. 3. Electric displacement vector and Gauss’ law in media

We are now in a position to develop Gauss’ law in the case of media. The key idea is to
divide up the charge distribution into bound and free charges

ρ = ρb + ρf

Then Gauss’s law (MI) becomes

∇ · E =
ρf
ε0

+
ρb
ε0

=
ρf
ε0
− ∇ · P

ε0

or
∇ · (ε0E + P ) = ρf (6)

Now let us define the Electric displacement as

D ≡ ε0E + P (7)

Gauss’ law in media then becomes

∇ ·D = ρf (8)

15. 4. Linear Homogeneous Media

So far, so good, but at the expense of the introduction of a new field D in addition to E.
However things become simpler when we consider an ideal type of medium which is linear,
isotropic and homogeneous (LIH).

Isotropic means there is no preferred direction which implies through symmetry that P is
‖ to E. Linear means that the applied E field results in a generally small polarization of
molecules through distortion and rotation, and we expect a linear response to the field

P = χEε0E (9)

χE (chi) is the susceptibility—large χE means a large response to the applied field and the
medium is easier to polarize.

Homogeneous means the medium has the same properties at all points in space so that χE
has no spatial dependence.

Using (9) results in

D = ε0E + P = ε0(1 + χE)E

≡ ε0εrE (10)

εr is the relative permittivity (or dielectric constant) of the medium and is a dimensionless
constant = 1 for vacuum; for most insulators εr = 1.05 − 1.3. Some crystals have high εr,
e.g. mica: er = 7. For dipolar fluids, e.g. deionized water: εr = 80.

The important point is that for LIH we have a linear constitutive relation (10) between E
and D.
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15. 5. Example: Dielectrics in Capacitors

The space between the two plates of a capacitor can be filled with an insulating material
rather than with a vacuum. There are induced polarization (bound) charges on the surfaces
next to the plates. These change the capacitance in a way that depends on the geometry
of the insulator and the plates. For a parallel plate capacitor: the electric field is simply

Figure 26: Parallel plate capacitor with dielectric

the superposition of the field from the free charges on the plates and bound charges at the
surface of the dielectric

E = E0 + EP =
1

ε0
(σf − σb)n̂ (11)

where n̂ is normal to the plates The electric field E as a function of the free charge density
on the plates σf is reduced by the polarization of the dielectric between the plates. N.B. the
total free charge on a plate is still Q = Aσf . Also the electric displacement turns out to
simply be

D = σf n̂

this can be checked by the modified version of Gauss’s Law which gives∮
S
D · dS =

∫
V
ρf dV = (Q)enc (12)

Taking a Gaussian pillbox area a straddling a plate one finds that

a|D| = aσf

The parallel plate capacitance is given in terms of the potential difference Vd, which remains

Vd = −
∫ 2

1
E · dl

When we integrate along the normal from plate 1 to plate 2

Vd = Ed =
Dd

ε0εr

and

C =
Q

Ed
=
Aσf
Ed

=
AD

Ed
=
Aεrε0
d

= εrC0 (13)

where C0 is the capacitance without the dielectric present. For any geometry of capacitor
there is an increase in the capacitance due to the presence of a dielectric between the plates.
Note that it is not necessarily by just a factor εr!
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EM 3 Section 16: Magnetic Media

16. 1. Magnetic Materials

Generally more complicated than the dielectrics that we reviewed last lecture.

When an external magnetic field is applied to a material it produces a magnetization of
the atoms of the material. There are several different types of magnetization:

• Diamagnetism - the orbital angular momentum of the atomic electrons is increased
slightly due to electromagnetic induction.
This magnetization is opposite to the external magnetic field.

• Paramagnetism - if the atoms of a material have intrinsic magnetic moments, they
align with the applied field, due to U = −m ·B.
This magnetization is parallel to the external magnetic field.

• Ferromagnetism - in a few materials the intrinsic magnetic moments of the atoms matom

spontaneously align due to mutual interactions of a quantum nature called ‘exchange
interactions’. They form domains with moments matom all in the same direction. This
magnetization can form permanent magnets.

16. 2. The Magnetization Vector

In analogy with the polarisation vector for dielectrics the magnetization vector, M , is the
key macroscopic field for magnetic media.

The infinitesimal magnet (equivalent to small current loop) in volume dV is given by the
magnetic dipole moment per unit volume:

dm = MdV (1)

The units of magnetization M are Am−1 and m in Am2.

Figure 27: Magnetization loops

An array of small magnetic dipoles can be thought of as producing macroscopic current loops
on the surface of the material. These currents circulate round the direction of M , with a
magnetization current density JM (see figure).
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Similarly, spatial variation of the magnetisation can be expected to produce a bulk magneti-
sation current.

To quantify these effects let us calculate the field of a magnetised object. Recall that the
magnetic vector potential at r of a magnetic dipole at r′ is

A(r) =
µ0

4π

m× (r − r′)
|r − r′|3

(2)

This generalises, when we replace m by MdV ′ and integrate the magnetisation over some
volume V , to

A(r) =
µ0

4π

∫
V

M × (r − r′)
|r − r′|3

dV ′ (3)

Now we recall that
(r − r′)
|r − r′|3

= ∇′ 1

|r − r′|
(4)

and use the product rule

∇′ ×
(
M(r′)

|r − r′|

)
=

1

|r − r′|
∇′ ×M(r′) +∇′

(
1

|r − r′|

)
×M(r′)

to obtain

A(r) =
µ0

4π

∫
V

[
1

|r − r′|
∇′ ×M(r′)−∇′ ×

(
M

|r − r′|

)]
dV ′

We can rewrite the second intergal as a surface integral (see tutorial sheet 9) to obtain

A(r) =
µ0

4π

∫
V

1

|r − r′|
∇′ ×M(r′)dV ′ +

µ0

4π

∮
S

1

|r − r′|
M(r′)× dS ′ (5)

Now, the first term on the right hand side is equivalent to the potential due to a volume
current in V

JM = ∇×M (6)

and the second term is equivalent to the potential due to a surface current on S (normal n̂)

j
M

= M × n̂ (7)

We use the subscript M to indicate that these are magnetisation currents resulting from
microscopic current loops. Do they really exist? not really but they are effectively present.

Example: Bar magnet “A cylindrical bar magnet has uniform magnetisation M along its
axis. To what current distribution is this equivalent?”

Now M is uniform so ∇×M = 0 and no bulk JM

Surface current density j
mag

= M × n̂ = Mez × eρ = Meφ has magnitude M and is

‘solenoidal’, i.e. resembling a solenoid with current flowing circumferentially

Example: Toroidal magnet “A long cylindrical bar magnet of uniform M is bent into a
loop. What is the equivalent current distribution?”
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Curl in cylindrical polars (ρ, φ, z) reads:

∇×K =

[
1

ρ

∂Kz

∂φ
− ∂Kφ

∂z

]
eρ +

[
∂Kρ

∂z
− ∂Kz

∂ρ

]
eφ

+
1

ρ

[
∂

∂ρ
(ρKφ)− ∂Kρ

∂φ

]
ez

Direction of M now varies with position

M = Meφ

In the curl formula, the only survivor is

∇×M =
1

ρ

∂

∂ρ
(ρM)ez =

M

ρ
ez

Alongside the solenoidal (circumferential around the toroid) jmag = M on surface, we now
have bulk magnetisation current N.B. j

mag
= M × n̂ has constant magnitude: larger net

Figure 28: Magnetization currents in bar magnet and toroidal magnet

current on outer than inner surface. JM makes up the difference

16. 3. Modification to Ampere’s Law

The Ampère-Maxwell law still holds for full current density J

∇×B = µ0

(
J + ε0

∂E

∂t

)

The key idea is to divide this into three contributions J = Jf + JM + JP

Jf , current of free charges i.e. the conduction current

JM = ∇×M , magnetisation current we have just met

JP = polarisation current — this new term comes from electric dipoles moving around

To find JP we use the (definition) ρP = −∇ · P and the continuity equation

ρ̇P = −∇ · JP
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from whicn we deduce

JP =
∂P

∂t
(8)

We would like Ampère-Maxwell in terms of Jf only:

∇×B = µ0

(
Jf + JM + JP + ε0

∂E

∂t

)

= µ0

(
Jf +∇×M +

∂P

∂t
+ ε0

∂E

∂t

)

= µ0

(
Jf +∇×M +

∂D

∂t

)
where we have used the definition of D. Now shift ∇×M onto left, divide by µ0:

∇×
(
B

µ0

−M
)

= Jf +
∂D

∂t

We define

H =
B

µ0

−M (9)

then

∇×H = Jf +
∂D

∂t
(10)

which is Ampère-Maxwell law in media. The Integral form of Ampère-Maxwell reads∮
C
H · dl =

∫
S
(Jf + ∂D/∂t) · dS

where C is a closed circuit bounding S

We run into difficulties in terminology for B, H. It is actually simplest and easiest to call
them ‘magnetic field B’ (units Tesla) and ‘magnetic field H’ in units of Am−1. But be
warned in some text B is the ‘magnetic field’ and H is the ‘auxiliary field’; in others B is
the ‘magnetic flux density’ and H is the ‘magnetic field strength’ (which is really confusing!)

We now basically have Maxwell’s equations in media since MII and MIII do not need to be
modified as they contain no J or ρ. See next lecture for summary

The magnetic susceptibility χM describes the relationship between magnetization and
applied field, by relating M to H. We will assume again an LIH medium (linear, isotropic,
homogeneous). Then the relation may be written

M = χMH (11)

Warning—some books, e.g. Grant & Phillips, use χBB = µ0M which can be very confusing!

The equivalent of the dielectric constant is known as the relative permeability of a mate-
rial, µr:

B = µrµ0H (12)

where (µr − 1) = χM . The limit of no magnetization is χM = 0 and µr = 1.

In contrast to dielectrics, the magnetic susceptibility χM can be either positive or negative,
and µr < 1 or µr > 1.
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EM 3 Section 17: Summary of EM in media; boundary conditions on fields

17. 1. Effect of Magnetic Materials on Inductance

First we have to finish off our description of magnetism with a look at how inductance is
affected by magnetisation currents

Example: conducting core in solenoid “A long solenoid of n turns per unit length,
length L and cross sectional area A is filled with ferrite, in which M obeys M = χmH where
χm = 900. Find the self inductance L.”

Recall the definition L = ΦB/I this stems from Faraday’s law MIII, and is therefore un-
changed by media. Ampère’s law in the static situation ∂D/∂t = 0 becomes

∇×H = Jf + 0

⇒
∮
H · dl =

∫
Jf · dS = nLI

in integral form where I is the usual conduction current. Now note the symmetry: H is
axial within the solenoid and vanishes outside for large L. Taking a loop as shown in figure,

Figure 29: Solenoid with conducting core: Amperian loop

H = nI, so M is axial; magnitude M = χmnI

Then B also must be axial:

B = µ0(H +M) = (χm + 1)µ0nI

⇒ ΦB = nALB = (χm + 1)µ0n
2ALI

⇒ L = ΦB/I = (χm + 1)µ0n
2AL

Thus L is 901 times larger than in vacuum (vacuum case: χm = 0). For a ferromagnetic
material there is a very large increase in self inductance.

On the other hand for diamagnetic/paramagnetic materials there is a small decrease/increase
in the self-inductance.

For ferromagnetic materials the energy stored in an inductor increases by a large factor
µr ≈ 103 − 106: See section 17.3 for energy stored in fields

17. 2. Electromagnetism with media: summary

Maxwell’s equations in general form read

∇ ·D = ρf (1)
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∇× E = −∂B
∂t

(2)

∇ ·B = 0 (3)

∇×H = Jf +
∂D

∂t
(4)

Definitions of D,H are
D = ε0E + P B = µ0(H +M) (5)

Relations for LIH Media

P = χEε0E M = χmH (6)

D = ε0εrE ≡ εE B = µ0µrH ≡ µH (7)

εr = 1 + χE µr = 1 + χm (8)

17. 3. Energy densities and Poynting Vector

Recall that E · Jf is the power delivered per unit volume so the energy density u obeys

du

dt
= E · Jf (9)

Now use modified MIV to express

E · Jf = E · (∇×H)− E · ∂D
∂t

Furthermore we can use a product rule from lecture 1 to write

E · J = H · (∇× E)−∇ · (E ×H)− E · ∂D
∂t

= −H · ∂B
∂t
−∇ · (E ×H)− E · ∂D

∂t

= − ∂

∂t

(
1

2
E ·D +

1

2
B ·H

)
−∇ · (E ×H)

provided that E · Ḋ = Ė ·D and B · Ḣ = Ḃ ·H which is true for linear static media. Then
integrating over a volume V of the medium and using the divergence theorem on the second
term as usual, we obtain from (9) for the total energy

dU

dt
= − ∂

∂t

∫
V

(
1

2
E ·D +

1

2
B ·H

)
dV −

∮
S
(E ×H) · dS (10)

From the first term we identify the electric and magnetic energy densities as

uM =
1

2
B ·H uE =

1

2
E ·D (11)

and from the second term we identify the Poynting vector as

S = E ×H (12)
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17. 4. Boundary Matching Problems

There are often have sharp interfaces between media. These boundaries acquire nonzero
values of σP surface polarization charge and j

mag
surface magnetisation current

In keeping with use of MI-MIV in general form, we want to avoid considering these, and
think about free charges and currents only . . .

1. First condition (from ∇ ·D = ρf ): Divergence theorem:

Figure 30: Gaussian surface for deriving continuity conditions on normal components (similar
to Griffiths Fig 2.36)

∇ ·D = ρf ⇒
∮
D · dS = Qf,enclosed

Apply to small pillbox or “patch”, vector area dS = n̂dS

(D2 −D1) · n̂ dS = σf dS

surface density of FREE charges only. In the absence of free surface charges Dnormal is
continuous. We can also write this as

(D2 −D1) · n̂ = σf

2. Second condition (from ∇ ·B = 0):

∇ ·B = 0 ⇒
∫
B · dS = 0

Apply to small Gaussian pill box (or “patch”)∫
B · dS = (B2 −B1) · n̂ dS = 0

Therefore Bnormal is continuous. This is completely general.

3. Third condition (from ∇×E = −∂B/∂t): t̂ = unit tangent satisfies t̂ · n̂ = 0; we take
a rectangular loop straddling the interface length ` height h∮

E · dl = (E1 − E2) · t̂ l = − ∂

∂t
ΦB

Unless B is infinite, the magnetic flux cutting the loop ΦB → 0 as h→ 0

⇒ (E1 − E2) · t̂ = 0
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Figure 31: Amperian loop for deriving continuity conditions on tangential components (sim-
ilar to Griffiths Fig 2.37)

but t̂ is arbitrary within plane of the surface: Etangential is continuous is completely general
as it stands. N.B. this is two conditions in 3D

4. Fourth condition (∇×H = Jf + ∂D/∂t):

j
f

= free surface current / unit area

∮
H · dl = j

f
· ŝ `+

∂D

∂t
· ŝ ` h

where ŝ = t̂× n̂ = unit vector ⊥ to Ampèrian loop

Now take h→ 0: last term vanishes∮
H · dl = (H1 −H2) · t̂ ` = j

f
· ŝ `

In the absence of free surface currents H tangential is continuous

The general form is rarely needed and may be written in several equivalent ways:

(H1 −H2) · t̂ = j
f
· ŝ

(H tang
2 −H tang

1 ) = j
f
× n̂

(H2 −H1)× n̂ = −j
f

Summary of the continuity conditions

1. Dn continuous if σf = 0

2. Bn continuous always

3. Et continuous always

4. H t continuous if j
f

= 0

These are key results and you should know the derivations.

Problems with nonzero σf or j
f

are uncommon but for these:

(D2 −D1) · n̂ = σf replaces 1

(H tang
2 −H tang

1 ) = j
f
× n̂ replaces 4
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EM 3 Section 18: Examples of continuity conditions; waves in media

18. 1. Continuity conditions: examples

Example: Inclined dielectric slab

“The electric field Eo outside a large dielectric slab of relative permittivity εr is uniform and
at angle θ to the normal to the slab. What is the electric field Ei inside the slab?”.

Figure 32: Similar to Griffiths Fig 4.34

Outside: Do = ε0E
o inside: Di = εrε0E

i. Let ψ be the angle between the normal to the
plane and Ei

Take the normal to slab in ez direction and tangent in ex direction and write (x, z) compo-
nents of fields as

Eo = (Eo sin θ, Eo cos θ) Do = ε0(Eo sin θ, Eo cos θ)

Ei = (Ei sinψ,Ei cosψ) Di = ε0εr(E
i sinψ,Ei cosψ)

Now impose b.c.s:

1. Dn = Dz continuous:

Di
z = Do

z ⇒ ε0E
o cos θ = ε0εrE

i cosψ

⇒ Ei =
Eo

εr

cos θ

cosψ

2. Et = Ex continuous:
Ei
x = Eo

x ⇒ Eo sin θ = Ei sinψ

⇒ Ei = Eo sin θ

sinψ

Result:

1

εr

cos θ

cosψ
=

sin θ

sinψ

⇒ ψ = tan−1 (εr tan θ)
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Checks: For θ = π/2: Ei = Eo, ψ = π/2 (E is purely tangential, continuous)

For θ = 0: Ei = Eo/εr, ψ = 0 (D is purely normal, continuous)

Remarks D ‖ E everywhere; but the angle of both is altered within slab. Ei is the superpo-
sition of uniform Eo with that of the polarization charges on surface of slab. Unless θ = 0,
as in a parallel plate capacitor, D/ε0 is not “the E field you would have had” without the
slab which would be Di = ε0εrE

o

Example: Spherical cavity in dielectric

“A large block of dielectric of relative permittivity εr > 1 contains a spherical cavity. The
E field far away from the cavity is uniform, with magnitude E0. What are E,D within the
cavity?”

Figure 33: Spherical cavity in dielectric - Griffiths Example 4.7

Use spherical polars with origin at the centre of the sphere and take z axis ‖ E0. Therefore
there is symmetry w.r.t. φ.

At the surface of the spherical cavity σp = P · n̂ where n̂ is outwards normal of material
(inwards normal of sphere). Therefore the field inside is enhanced by σp(θ).

The charge around the cavity σp(θ) forms an effective dipole. Outside the field lines are
distorted locally by σp(θ)

Try a uniform field in z direction within cavity:

V (r < a) = −Einz = −Einr cos θ .

Try the uniform field E0 plus a dipole form outside

V (r > a) = −E0r cos θ +
A cos θ

r2

where A is a constant to be fixed.

Recall that these two expressions satisfy Laplace’s equation away from the boundary where
there are no charges. We now just need to satisfy the boundary conditions on the fields.

First recall that E = −∇V and in spherical polars

∇V = er
∂V

∂r
+ eθ

1

r

∂V

∂θ
+ eφ

1

r sin θ

∂V

∂φ
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At the boundary: Et continuous requires Eθ continuous at r = a:

−E0a sin θ +
A sin θ

a2
= −Eina sin θ

Dn continuous requires Dr = −εr∂V/∂r continuous at r = a:

εr

(
E0 cos θ +

A cos θ

a3

)
= Ein cos θ

Combine these

Ein = εr

(
E0 +

2A

a3

)
= E0 −

A

a3

eliminate A/a3:

Ein = E0
3εr

1 + 2εr

with Ein = Einez . Then Din = εrε0Ein = ε0Ein (since the cavity has εr = 1).

Check: Ein > E0 if εr > 1, field inside enhanced.

Uniqueness ⇒ problem solved!

This example may be used to derive an approximate formula for atomic polarizability the
Clausius Mosotti equation - see tutorial 10.

18. 2. Waves in media

As a first look at waves in media let’s consider a non-conducting medium with ρf = 0,
Jf = 0. Let us write the permittivity ε = ε0εr and the permeability µ = µ0µr.

As before when we considered waves in vacuo in lecture 13 we can reduce Maxwell’s equation
to two decoupled wave equations

∇2E = εµ
∂2E

∂t2
(1)

∇2B = εµ
∂2B

∂t2
(2)

These are precisely the same as in lecture 13 but with ε0 replaced by ε and µ0 replaced by µ.

Clearly we have plane solutions

E = E0 exp i(k · r − ωt) B = B0 exp i(k · r − ωt) (3)

where k2 − µεω2 = 0. Thus the wave speed is

v =
ω

k
=

1
√
µε

and recalling c =
1

√
µ0ε0 v2

c2
=

1

µrεr
≡ n2 (4)
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where n is called the refractive index of the medium

As in lecture 13 MI,MII imply

ik · E0 = 0 ik ·B0 = 0

i.e. E and B are perpendicular to the direction of propagation k and the wave is transverse.

This may seem like a trivial generalisation of waves in vacuo but the physics is remarkable—
we have managed to deal with all the atoms, atomic dipoles, polarisation etc by wrapping
them up into ε and µ and the net result is simply to change the velocity of the wave.

18. 3. Waves in conductors

In conductors there is free charge and currents flow in response to an electric field. As we
shall see this has a serious effect on the propagation of an EM wave in a conductor.

Let us start with MIV and use the linear relations

B = µH D = εE

and Ohm’s law J = σE

∇×H =
∂D

∂t
+ Jf

→ ∇×B = µε
∂E

∂t
+ µσE

Now as usual MIII yields

∂

∂t
(∇×B) = −∇× (∇× E) = ∇2E −∇(∇ · E)

The microscopic M1 reads ∇ · E = ρ/ε. Let us assume a uniform charge density so that
∇ρ = 0.

Then finally we obtain

∇2E = µε
∂2E

∂t2
+ µσ

∂E

∂t
(5)

we note an additional term on the rhs whose origin is the free current in Maxwell IV. How
will this term affect the wave?

A similar calculation (Exercise) yields

∇2B = µε
∂2B

∂t2
+ µσ

∂B

∂t
(6)

Let us proceed blindly and bravely by making an ansatz of plane wave moving in the z
direction E = E0 exp i(k̃z − ωt). When we sub this into (1) we obtain

k̃2 = µεω2 + iµσω

Clearly something has to become complex to solve this!
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EM 3 Section 19: Waves in Conductors: Skin Effect

19. 1. Recap: Waves in conductors

Last time we derived the equation

∇2E = µε
∂2E

∂t2
+ µσ

∂E

∂t
(1)

where σ is the conductivity. Substituting a plane wave ansatz

E = Ẽ0 exp i(k̃z − ωt) (2)

yields
k̃2 = µεω2 + iµσω (3)

To solve this we have to take a complex wavenumber from (2)

k̃ = k + iκ (4)

Equating the real and imaginary parts in (3) yields

k2 − κ2 = µεω2 (5)

2kκ = µσω (6)

The second equation can be solved for κ =
µσω

2k
then eliminating κ from (5) yields

k4 −
(
µσω

2

)2

= µεω2k2

This is a quadratic in k2 with solution

k2 =
1

2
µεω2 +

1

2

(
(µεω2)2 + (µσω)2

)1/2

=
µεω2

2

(1 +
(
σ

εω

)2
)1/2

+ 1

 (7)

(we have taken the positive square root so that the solution for k2 is positive). Then we can
use (5) to obtain

κ2 =
µεω2

2

(1 +
(
σ

εω

)2
)1/2

− 1

 (8)

Now the complex wavenumber (4) implies

E = Ẽ0e−κzei(kz−ωt) (9)

The first exponential decays with z and causes attenuation of the wave. The characterisitic
distance over which the wave decays is known as the skin depth and is given by

δ =
1

κ
(10)
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Thus the skin depth is the typical distance a wave penetrates into a conductor.

In the result (8) the ratio σ
εω

is significant. 1/ω has the dimensions of time as does ε/σ. Thus
this quantity is a ratio of two timescales.

19. 2. Good and poor conductors

In order to understand the timescale ε/σ let us return to the continuity equation for free
charge

∂ρf
∂t

= −∇ · Jf (11)

Using Ohm’s law and Gauss’s law (plus linear media property)

∇ · Jf = σ∇ · E =
σ

ε
∇ ·D =

σ

ε
ρf

So finally
∂ρf
∂t

= −σ
ε
ρf

which has solution
ρf (t) = ρf (0)e−(σ/ε)t

So the free charge density decays on a timescale τ =
ε

σ
which is the relaxation time. If this

is small then any free excess charge is quickly rearranged away and the medium is a good
conductor. A perfect conductor would have this timescale tending to zero i.e. σ →∞.

On the other hand if τ is large, free charge hangs around for a long time and the medium is
a poor conductor.

Returning to the quantity
σ

εω
=

1

2π

T

τ

we see that is (roughly) the ratio of the oscillation period of the wave to the charge relaxation
time in the conductor. If, for a given frequency ω, this ratio is large the medium is a good
conductor, whereas if the ratio is small the medium is a poor conductor for that frequency.

In the tutorial you are invited to work out the different limits. One finds from (8) that the
skin depth

δ '
(

2

µωσ

)1/2

for σ � εω

δ '
(

4ε

µσ2

)1/2

for σ � εω

Thus the skin depth is much smaller for a good conductor. Also note that for a poor
conductor the behaviour does not depend on frequency.

Typical metals are good conductors up to about 1 MHz

δ ' 1cm at 50 Hz (mains frequency)

δ ' 10 µm at 50 MHz
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Consequences / Applications of Skin effect

• shielding of sensitive electronics (metal casework)

• power lines and cable design: conductors > 1cm thick are wasted since the current
resides only in the skin layer around the outside and there is a ‘dead zone’ in the
centre

• submarines can’t use radio

• mobile phones don’t work inside metal boxes (? paint concert halls with metal paint?)

• microwave oven doors: metal mesh stops radiation escaping, holes � λ are OK

19. 3. Phase lag of magnetic field

MI and MII imply further constraints on our wave. As usual

ik̃ · Ẽ0 = 0 ik̃ · B̃0 = 0

Take the direction of propagation k̃ in the ez direction and Ẽ0 in the ex direction. Substi-
tuting in MIII

ik̃ × Ẽ0 = iωB̃0

⇒ B̃0 =
k̃Ẽ0

ω
ey (12)

However k̃ is complex so Ẽ0 and B̃0 will also be complex. Let us write

k̃ = Reiφ

Then using (7,8)

R =
(
k2 + κ2

)1/2
= (µεω2)1/2

(
1 +

(
σ

εω

)2
)1/4

φ = tan−1
(
κ

k

)
= tan−1


(

1 +
(
σ
εω

)2
)1/2

− 1(
1 +

(
σ
εω

)2
)1/2

+ 1


1/2

For a good conductor
φ→ tan−1[1] = π/4

and
k̃ ' (µωσ)1/2eiπ/4 (13)

The vectors Ẽ0, B̃0 are also complex. Let us write

Ẽ0 = E0eiδE B̃0 = B0eiδB (14)
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Putting these in (12) yields

B0eiδB =
Reiφ

ω
E0eiδE (15)

⇒ δB − δE = φ (16)

Condition (16) means that the magnetic field lags behind the electric field by angle φ.

Finally taking the real part to get real fields we have

E = E0e−κz cos(kz − ωt+ δE)ex (17)

B = B0e−κz cos(kz − ωt+ δE + φ)ey (18)

Figure 34: Electric and magnetic fields and the skin depth (Griffiths fig 9.18)

19. 4. Intrinsic Impedance

As we have seen
E = ex Ẽ0e

i(kz−ωt) ; B = ey B̃0e
i(kz−ωt)

where Ẽ0 and B̃0 are complex

Whereas in vacuum E and H = B/µ0 are in phase, here there are not. The complex number

Z ≡ Ẽ0

H̃0

(19)

is the Intrinsic Impedence of the medium. One can think of it as the generalised resistance
(when Z is real it reduces to the resistance). Dimensions are Ω (Ohms): check units E =
V/m;H = A/m ⇒ E/H = V/A = Ω

In a vacuum
E0

H0

=
E0µ0

B0

= cµ0 ≡ Zvac = 377Ω

This is real since E,H are in phase

In a dielectric
E0

H0

=
E0µ

B0

=
√
µrεr Zvac

As we have seen in a good conductor we have k̃ ≈
√
iµωσ (13)

Z =
Ẽ0

H̃0

=
Ẽ0µ

B̃0

=
ωµ

k̃
'
(
µω

σ

)1/2

e−iπ/4

which is complex.
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EM 3 Section 20: Reflection at boundaries: normal incidence

20. 1. Reminder on plane waves and amplitudes

Consider a plane polarized wave propagating in the ez direction

E = E0ei(kz−ωt) E = E0ei(kz−ωt)

As we have seen Maxwell III implies

ikez × E0 = iωB0ey

Usually we take E0 = E0ex and

B0 =
kE0

ω
ey .

Now E0,B0 can, in principle, be complex, as they were for waves in conductor. Previously
we indicated this by a tilde e.g. Ẽ0. but to lighten notation we won’t do that here and
instead just refer to E0 as the complex amplitude; the (real) amplitude is then the modulus
|E0| i.e. E0 = |E0|eiδE . Recall that the complex impedance is given by the ratio of complex
amplitudes

Z =
E0

H0

=
µE0

B0

as we have seen complex Z allows a phase shift between E and H

20. 2. Waves at interfaces

Now consider a plane polarized wave propagating in the ez direction normal incidence to
an interface and call this Einc. Generally medium 1 has complex impedance Z = Z1 and
medium 2 has complex impedance Z = Z2. We take coordinates: ex along Einc; ey along
H inc; ez along k1 (forming a right handed triad).

We place the boundary at z = 0 so that the x–y plane is the interface between the two media

Figure 35: Wave at interface between two media similiar to Griffiths fig. 9.13

20. 3. Interfaces between two dielectric media

It is simplest to start by considering two dielectric media where we have seen that

Zi = viµi
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is real and there is no phase lag between E and H

Einc = EI ex e
i(k1z−ωt)

H inc =
EI
µiv1

ey e
i(k1z−ωt)

Also we can take the amplitude EI to be real. Likewise for transmitted and reflected waves
(see diagram):

Etrans = ET ex e
i(k2z−ωt)

H trans =
ET
µ2v2

ey e
i(k2z−ωt)

Eref = ER ex e
i(−k2z−ωt)

Href = − ER
µ1v1

ey e
i(−k2z−ωt)

N.B. The reflected wave propagates in −ve z direction hence sign switch in the exponential
(so that wave speed is v = −ω/k) and sign switch in Href (so that −ez , E, H form a
right-handed triad).

Now invoke continuity conditions (see sections 17 and 18): ex and ey are both tangential
to interface and tangential components of E and H are continuous. Note that we assume
that there no surface currents or charges which is usually the case. Then the continuity
conditions become

Etan = Ex is continuous
⇒ EI + ER = ET

H tan = Hy is continuous

⇒ EI
µ1v1

− ER
µ1v1

=
ET
µ2v2

Solve for ET and ER, knowing EI : add the equations to find

2EI
µ1v1

=

[
1

µ1v1

+
1

µ2v2

]
ET

Also recall that

vi =
1
√
µiεi

=
c

ni

then the Amplitude transmission coefficient

t ≡ ET
EI

=
2

1 + β

and the Amplitude reflection coefficient

r ≡ ER
EI

=
1− β
1 + β

where β is defined as

β =
µ1v1

µ2v2
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Now if the permeabilities µi = µ0 (non-magnetic media) we find

r =
v2 − v1

v1 + v2

=
n1 − n2

n1 + n2

t =
2v2

v1 + v2

=
2n1

n1 + n2

So the reflected wave is in phase if v2 > v2 but out of phase if v2 < v1. If v2 = v1 (two media
the same) there is no reflected wave as expected.

Energy flow

The Poynting vector is given as usual by

S = E ×H =
1

µ
E ×B

so the energy flux per unit volume averaged over one period or intensity of the wave is
given by

〈S〉 =
1

µ
〈E ×B〉 =

1

µv

E2
0

2
=
εv

2
E2

0

So R the ratio of reflected to incident intensity and T the ratio of transmitted to incident
intensity are given by

R = r2 =
(
n1 − n2

n1 + n2

)2

T =
ε2v2

ε1v1

t2 =
4n1n2

(n1 + n2)2

N.B. since R + T = 1 we recover energy conservation

20. 4. General waves at interface: normal incidence

Basically we now repeat the above calculation but for complex impedance so that there may
be phase lag between E and H

Einc = EI ex e
i(k1z−ωt)

H inc =
EI
Z1

ey e
i(k1z−ωt)

Etrans = ET ex e
i(k2z−ωt)

H trans =
ET
Z2

ey e
i(k2z−ωt)

Eref = ER ex e
i(−k2z−ωt)

Href = −ER
Z1

ey e
i(−k2z−ωt)

We afain assume that there no surface currents or charges and the continuity conditions
reduce to Etan = Ex continuous and H tan = Hy continuous

EI + ER = ET
EI
Z1

− ER
Z2

=
ET
Z2
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Solve for ET and ER, knowing EI as before

t ≡ ET
EI

=
2Z2

Z2 + Z1

r ≡ ER
EI

=
Z2 − Z1

Z2 + Z1

N.B. These are now complex quantities

20. 5. Reflection at Conducting Surface: why metals are shiny

The x–y plane is a boundary between vacuum (medium 1) and a conductor (medium 2).

Z1 = Zvac = 377Ω

Z2 =

√
−iµω
σ

=
i− 1

σδ

where δ =
√

2/µσω is skin depth

Z2 is complex and ω-dependent. But typical magnitude is tiny... e.g. Cu at 1010 Hz:

|Z2| = 0.036Ω = 10−4Zvac

and at 1015 Hz (visible light frequency)

|Z2| = 3.6Ω = 0.01Zvac

Amplitude reflection (note phase reversal)

r =
Z2 − Z1

Z2 + Z1

' −1

to within (complex) terms of order 1 percent

Near perfect reflection (with phase reversal) is exhibited by good conductor— this explains
why metals are shiny.

Physical origin is the skin effect; transmitted wave decays like e−z/δ, almost all the energy
you put in comes back out

Energy Flow

With complex impedances we need to bit more careful with the Poynting vector. Generally
we use the time-averaged Poynting vector which is given by

〈S〉 = k̂
1

2
<
(

1

Z

)
|E0|2

and the intensity is given by its magnitude

|〈S〉| = 1

2
<
(

1

Z

)
|E0|2
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EM 3 Section 21: Reflection at boundaries: oblique incidence

Last lecture we analysed the case of waves impinging on an interface at normal incidence.
Here we consider a general angle of incidence

21. 1. General Angle of Incidence

As before we take an interface between two media to be the x–y plane at z = 0: medium 1

Figure 36: Wave at interface between two media Griffiths fig. 9.14

is z < 0; medium 2 is z > 0.

We can take the incident wave vector kI to be in the x–z plane which is then the plane of
incidence; y out of page

Einc = EI e
i(kI .r−ωt)

Eref = ER e
i(kR.r−ωt)

Etrans = ET e
i(kT .r−ωt)

We also have the corresponding magnetic field vectors e.g.

H inc =
1

µ1v1

k̂ × Einc

Now we have to fit the boundary conditions at the interface. First of all we note that all the
boundary conditions will be of the form

( )ei(kI ·r−ωt) + ( )ei(kR·r−ωt) = ( )ei(kT ·r−ωt)

So for the boundary conditions to hold for all points on the interface x–y plane we must
have the exponential factors (i.e. the phases) equal

⇒ kI · r = kR · r = kT · r = φ = constant (1)

and straightaway we see that kI , kR, kT , all lie in the same plane—the plane of incidence.
i.e. none of them have a component in the y direction

Then (1) becomes
kI sin θIx = kR sin θRx = kT sin θTx

But this must hold for all x and also we know from k = ω/v that

kI = kR =
v2

v1

kT =
n1

n2

kT
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which together imply

θI = θR angle of incidence equals angle of reflection

n1 sin θI = n2 sin θT Snell’s Law

We now have the job of satisfying the boundary conditions (see sections 17,18) which become

ε1(EI + ER)z = ε2(ET )z (2)

(BI +BR)z = (BT )z (3)

(EI + ER)x,y = ε2(ET )x,y (4)

(HI +HR)x,y = (HT )x,y (5)

The final two equations are both pairs of equation for the two transverse x,y components.

Polarisation Effects

The reflection and transmission coefficients r, t depend on the polarisation state of the inci-
dent beam. There are two basic polarisation states

A. EI in plane of incidence (EI has no y component and HI along ey)

B. HI in plane of incidence (HI has no y component and EI along ey)

Other polarization states can be decomposed into A+B by superposition. We will only work
out CASE A: E in plane of incidence

Figure 37: Wave at interface between two media Griffiths fig. 9.15

Clearly (3) is automatically satisfied as B has no z component. It turns out (as you can
check) that (5) does not give any additional information to (2) and (4)

Thus noting sign of Ez: − for I,T but + for R

Einc = EI (ex cos θI − ez sin θI) ei(φ−ωt)

Eref = ER (ex cos θI + ez sin θI) ei(φ−ωt)

Etrans = ET (ex cos θT − ez sin θT ) ei(φ−ωt)

Then condition (2) ⇒ ε1(−EI + ER) sin θI = −ε2ET sin θT

and condition (4)⇒ (EI + ER) cos θI = ET cos θT

84



2 equations in 2 unknowns, solve for ET , ER: We define as before

β =
µ1v1

µ2v2

=

(
µ1ε2
ε1µ2

)1/2

and also

α =
cos θT
cos θI

then we find

r ≡ ER
EI

=
α− β
α + β

t ≡ ET
EI

=
2

α + β
(6)

which can also be written as

r =
Z2 cos θT − Z1 cos θI
Z2 cos θT + Z1 cos θI

t =
2Z2 cos θI

Z2 cos θT + Z1 cos θI
(7)

where Zi is the usual impedance. For nonmagnetic dielectrics µ1 = µ2 = µ0, Z1 = Zvac/n1,
Z2 = Zvac/n2 ⇒

r =
n1 cos θT − n2 cos θI
n1 cos θT + n2 cos θI

use Snell’s law to eliminate n’s:

r =
sin 2θT − sin 2θI
sin 2θT + sin 2θI

(8)

Fresnel Formula for case A (E in plane of incidence)

21. 2. Brewster’s Angle

An interesting consequence of Fresnel equations (6) is that r = 0 when α = β. This occurs
at special angle of incidence know as Brewster’s angle θI = θB(

1−
(
n1

n2

)2

sin2 θB

)1/2

= β cos θB (9)

⇒ 1−
(
n1

n2

)2

sin2 θB = β2(1− sin2 θB) (10)

and finally this gives

sin2 θB =
1− β2(
n1

n2

)2
− β2

(11)

In the typical case µ1 = µ2 we have β = n2/n1 and one can show that

tan θB =
n2

n1

(12)

(θB ' 50◦ for water/air)

N.B. Brewster’s angle only exists for case A: in case B there is no such effect.
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Brewster angle microscopy: Shine ‘case-A light’ on clean surface at θI = θB: no reflected
ray

Now adsorb thin layer of another material: reflected ray caused solely by film ⇒ sensitive
probe of film structure

Polarization by reflection: Unpolarised light source = random superposition of waves
with E in plane of incidence (case A) and transverse to it (case B)

Near to Brewster’s angle reflected ray is almost all polarized

One can eliminate reflected ray (glare) with polaroid filter which cuts out one plane of
polarised light; basis of polaroid sunspecs etc.

21. 3. Total Internal Reflection

Choose n1 > n2 (e.g. wave leaving dielectric into vacuum) then θT > θI ; θT = 90◦ at θI = θC .
Snell: sin θC = n2/n1. For θI > θC : we have Total Internal Reflection

Figure 38: Total internal reflection Griffiths fig 9.28

Evanescent Waves

To see what is happening for θI > θC , we persevere with the maths and note that if

sin θT =
n2

n1

sin θI > 1

then cos θT = (1− sin2 θT )1/2 = i

((
n2

n1

sin θI

)2

− 1

)1/2

clearly we can’t interpret θT as an angle any more but the maths is valid

One can show that

Eevanescent = ET e
i(kT ·r−ωt) = ET e

i(kx−ωt) e−z/α

where
k =

ωn1

c
sin θI α−1 =

ω

c

√
n2

1 sin2 θI − n2
2

with α ' the wavelength (∼ 0.5µm). So we have attenuation in the z direction

The transmission coefficient t 6= 0 but no energy is carried into medium 2.
Instead there is a travelling wave directed along the interface, which decays in the z direction
(into medium 2):

The decay is not adsorption or the skin effect but can be though of as Light tunnelling:
light can tunnel across a thin layer of medium 2 via the evanescent wave.
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