
Junior Honours

Electromagnetism Problem Sheet 4

Electrostatics: Electric field Energy; Magnetostatics: Biot-Savart
The questions that follow on this and succeeding sheets are an integral part of this course.
Cross references to the questions are given in the lecture notes. The code beside each question
has the following significance:

• K: key question – explores core material

• R: review question – an invitation to consolidate

• C: challenge question – going beyond the basic framework of the course

• S: standard question – general fitness training!

4.1 Where do you get the energy? [K]

A conducting sphere of radius a carries a charge Q on its surface.

(i) Find its potential ϕ(r) for r > a (choosing ϕ = 0 very far away), and thus the
potential V (Q) = ϕ(a) on the surface of the sphere.

(ii) Explain why the electrostatic energy of the charged sphere can be written We =∫Q
0 V (Q′)dQ′, and hence calculate it.

(iii) Show that this gives the same answer as found by the formula We = ε0
2

∫
|E(r)|2 dV

for the total energy in the electric field, where the volume integral is over all space.

4.2 Parallel spheres? [S]

Two thin concentric, conducting spherical shells have radii a and b > a. They carry
charges +Q and −Q respectively.

(i) Use Gauss’s law and symmetry to find the field E at a radius r from the centre.
Sketch the field lines.

(ii) Find the potential difference between the shells, and hence show that the capacitance
is C = 4πε0ab

b−a .

(iii) Show that this reduces to the form for a parallel plate capacitor of the appropriate
area, in the limit where b is only slightly bigger than a.

4.3 Atomic nucleus [S] (a) Assuming that the electric charge Ze of an atomic nucleus is
uniformly distributed inside a sphere of radius R, obtain the electric field E and electric
potential ϕ both inside and outside.

(b) Obtain an expression for the electrostatic energy 1
2

∫
ρϕ dV of the nucleus and verify

that it is equal to the field energy 1
2
ε0

∫
|E|2 dV (where the integral is over all space).

4.4 Under pressure [S]

A cylindrical pipe of radius 1cm and length 1m is filled with mercury (conductivity
σ = 1.1 × 106Ω−1m−1). A potential difference 100 V acts across the two ends of the
pipe, creating an electric current through the mercury (which remains stationary).

(i) Find the current density, assumed uniform, within the mercury. What is the total
current Ienc(r) enclosed by a circle of radius r, coaxial with the cylinder? Using Ampère’s
law, find the B field at radius r.



(ii) Consider a small volume dV of the mercury at radial distance r. Show that the B
field, acting on the current element JdV , produces a radial force dF = f r̂dV . Find the
sign and magnitude of the local force per unit volume f .

(iii) In practice this is balanced by a radial pressure gradient: fr = ∂p/∂r. Find the
pressure difference ∆p between the centre and the edge of the pipe.

[Remark – exactly the same force is present in a solid wire, but the balancing elastic
force is more complicated than a simple pressure field.]

4.5 A regrettable navigational error [S]

The Earth’s magnetic field arises from circulating currents in its core, and can be ap-
proximated as that of a dipole at the centre. Assume for this question that the axis of
the Earth’s dipole coincides with the axis of rotation, although they are actually several
degrees apart. On the equator (6400 km from the centre), the field strength is 4×10−5T ,
with B directed horizontally, pointing due North.

(i) Find the dipole moment. If this is modelled as arising from a simple current loop
whose radius is 0.1 times that of the Earth, what is the current?

(ii) Find the field strength at the geographical place called “the North Pole”. Which
way does the B field point there? (A sketch of the field lines may help.) Deduce that
“the North Pole” is actually the south pole of the Earth, viewed as a bar magnet.

4.6 In a spin [R/S] (first part done in lectures)

(i) Show that the B field on the axis of a circular current loop of radius a is

B =
µ0Ia

2

2(a2 + z2)3/2
ez

with z the distance along the axis from the centre of the loop.

(ii) An insulating disc of radius s has uniform surface charge density σ. It rotates at
angular velocity ω about a perpendicular axis through its centre. What is the surface
current density j(r) at position r relative to its centre?

(iii) Consider that part of the disc with radii between r and r+δr. Find its contribution
δB(z) to the field on the axis.

(iv) Hence give as an integral the field on the axis for the spinning disc, and evaluate
this at the disc’s centre.

(v) Show that as z →∞,

B(z) ∼ 1

8
µ0σω

a4

z3
ez.

(vi) What would the corresponding results be for a spinning ring of inner radius a and
outer radius b? Recover the result in part (i) by taking the limit b→ a.
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