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The Legendre Transform (LT) is a common feature of many upper division and graduate physics
classes. However, discussions of it tend to be ad hoc, poorly motivated, and confusing. As a
result, the LT equations become something to be memorized without understanding. In this paper
we describe a more satisfying way of looking at LT relations both mathematically and physically.
Mathematically this results in highly symmetric equations that clarify the structure of the transform
both algebraically and geometrically. Physically, we motivate the transform as an issue of choosing
independent variables that are easily controlled and give examples drawn from classical mechanics
and thermodynamics. In thermodynamics, we demonstrate how the LT arising naturally from
statistical mechanics and show how use of dimensionless thermodynamic potentials lead to more
natural and symmetric relations.

I. INTRODUCTION

The Legendre Transform (LT) is a commonly used
mathematical tool in upper division and graduate physics
courses, especially in Classical Mechanics (CM) [1], Sta-
tistical Mechanics (SM) and thermodynamics. [2]

Most physics majors are exposed to the LT first in CM,
where it provides the connection between the Lagrangian
L (q̇) and the Hamiltonian H (p), and then in SM where
it creates relations between the internal energy, E and
the various thermodynamic potentials, e.g., S, G,H and
A.

Despite this, the LT often appears as arbitrary, unmo-
tivated, and ad hoc. It is rarely studied in math courses
taken by physics students and it is almost never described
either in textbooks or lectures as a valuable general math-
ematical tool in the way the Fourier transform (FT) is.

In this paper we present a pedagogical introduction to
the LT, specifying it as a mathematical process and mo-
tivating it in terms related to physical conditions. We
discuss some of the symmetries and structures of the
transform and consider some of the reasons that might
be associated with why it appears difficult in physics. We
present a series of increasingly complex examples begin-
ning with CM and going through cases in SM.

This paper is not intended as a guide to pedagog-
ical reform as we have not carried out any research
on student difficulties with LT. (There are some rele-
vant studies of student difficulties with the mathemat-
ics associated with partial derivatives and differentials in
thermodynamics.[3]) It could serve as a starting point for
future research and course development on the subject.

II. LT AS AN ALTERNATIVE WAY TO
DISPLAY INFORMATION

A. Why does the LT seem obscure?

The way that the LT is presented in physics classes
often confounds students rather than enlightens them.
There are a number of reasons for this.

• The LT method tends to be poorly motivated.

• The general LT method is not often presented
and its mathematical structure and symmetries are
rarely displayed.

• The historically motivated choice of units hides the
natural mathematical structure of the LT.[4]

A deeper reason why the LT is seen as difficult in
physics is that there is a fundamental difference in the
way functions are typically treated in mathematics and
in many branches of physics including in lower division
college physics classes.[5]

In mathematics, a function is seen as a specific rule for
transforming a variable (or set of variables) in a domain
into a particular result in a range. In most applications
that are seen in mathematics courses taken by physics
majors, both the domain and the range are simply a set
of numbers.

In physics, a function is typically thought of as a re-
lation between physical rather than mathematical quan-
tities. Thus, when we are thinking about physical func-
tions we tend not to pay particular attention to the par-
ticular functional form the mathematical function uses to
encode physical information. For example, if we are de-
scribing a position as a function of time, we might write
it as x (t). We do not bother to change the symbol x if
we decide to give t in milliseconds instead of in seconds.
If we write the temperature as a function of position as
T (~r), we do not change our symbol if we switch to a dif-
ferent coordinate system or measuring scale. In contrast,
the LT is explicitly about how information is coded in
the functional form.

In addition, the first introduction a student tends
to get to the LT is the transformation in CM from
the Lagrangian to the Hamiltonian. This involves the
switch from the velocity to the momentum variable in
the non-relativistc kinetic energy. In the context of non-
relativistic particle motion with velocity independent po-
tentials, the transform involves the kinetic energy, a
quadratic function in the velocity – the most trivial func-
tion to which the LT can be applied. The result looks
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FIG. 1: The graph of a convex function.

simply like a shift in units (from v to mv as an inde-
pendent variable) so that it seems pointless. Since the
position variable q plays no role in the transform and typ-
ically it appears only in V , the result is often regarded
as a mysterious change of sign in V (L = T − V vs.
H = T + V ).

Typically, the next encounter a student has with the
LT is in the context of thermodynamics and SM – both
traditionally known as very confusing subjects. Since a
general understanding of the LT has not been developed
in CM, its presence in thermodynamics and SM only adds
to the confusion.

In the rest of this section, we motivate the LT as a gen-
eral mathematical transformation and provide a trans-
parent description of the method that displays its general
properties and symmetries.

B. The point of the LT is to express the
information contained in a function in a more

convenient way.

Generally, a function expresses a relation between two
parameters: an independent variable or control param-
eter (x) and a dependent value or function (F ). This
information is encoded in the functional form of F (x).
(For clarity, we begin with a single variable, x, and con-
sider multivariate functions later.)

In some circumstances, it is useful to encode the infor-
mation contained in F (x) in a different way. Two com-
mon examples are the Fourier transform and the Laplace
transform. These express the function F as sums of (com-
plex or real) exponentials, and display the information in
F in terms of the amount of each component contained
in the function rather than in terms of the value of the
function.

Given a function F (x), the Legendre Transform pro-
vides a more convenient way of encoding the information
in the function when two conditions are met.

1. The function is strictly convex (second derivative
never changes sign or is zero) and is smooth (has

FIG. 2: The graph of the slope of a convex function.

“enough” continuous derivatives)

2. It is easier to measure, control, or think about the
derivative of F with respect to x than it is to mea-
sure or think about x itself.

Because of condition 1, the derivative of F (x) with
respect to x can serve as a stand in for x; that is, there is
a one-to-one mapping between x and dF/dx. (We discuss
how to relax condition 1 later.) The LT shows how to
create a function that contains the same information as
F (x) but as a function of dF/dx.

C. The mathematics of the LT

We begin our detailed discussion of the LT by consider-
ing a single, smooth convex function of a single variable.

There are many equivalent ways to characterize convex
functions. The most convenient ones for us are

• The second derivative of our function, ∂2
xF (x) is

always positive or always negative.

Note that we write ∂x here to mean d/dx. This is meant
to simplify typesetting and to visually enhance certain
symmetry relations. It is not meant to stand for a partial
derivative (although it is useful when the multivariable
case is considered). A second characterization of convex-
ity is

• The slope function

s (x) ≡ ∂xF (x) (1)

is a strictly monotonic function of x.

A graphical way to see how the value of x and the
slope of a convex function can stand in for each other
can be seen by considering the example in Fig 1. Here,
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the curve drawn to represent F is convex. As we move
along the curve to the right (as x increases), the slope of
the tangent to the curve continually increases. In other
words, if we were to graph the slope as a function of x, it
would be a smoothly increasing curve, as shown in Fig 2.
If the second derivative ∂2

xF (x) exists (everywhere within
the range of x in which F is defined; part of the condition
for a “smooth” F ), there is a unique value of the slope
for each value of x, and vice versa. The appropriate
mathematical language is that there is a 1-1 relationship
between s and x:

x ⇔ s ,

that the function s (x) is single-valued, and that it can
be inverted to give a single-valued function

x (s) . (2)

In this way, we can also start with s as the independent
variable, use the above to get a unique value of x, and
then insert that into F (x) to access F as a function of s.
The standard notation for such a function is F (x (s)).

If we insist on a new encoding of the information in
F (in terms of s instead of x), this would appear to be
the most “natural” way, and the student would not be
subjected to the confusion that arises with the LT. In-
stead, the LT of F (x) is defined as a different function
of s, namely,[6]

G (s) = s · x (s)− F (x (s)) . (3)

Typically, this formula is presented with little motivation
or explanation, and leaves the students to ponder: Why?
Why the extra s · x? Why the minus sign? Frequently,
the instructor may invoke another magical relation to
answer such queries. Only with this peculiar defintion
can we have the property that “the slope of G (s) is just
x”:

x (s) =
dG

ds
≡ ∂sG (s) . (4)

Of course, this result also requires a careful computation.
Before providing ways to appreciate this definition of

the LT, as well as how never to forget “which sign goes
where” we present the graphic route to the transform.
Consider a plot of F vs. x in Fig. 3. Choose a value of
x, which is represented by the length of the horizontal
line (black on-line) labeled by x. Go up to the value on
the function curve, F (x). This value corresponds to the
length of the vertical line labeled by F (blue on-line).
Next, draw the tangent (red on-line) to the curve at that
point. The slope here is labeled s, as emphasized by the
call out bubble. Extend this tangent until it hits the
ordinate (the “F axis”). In this example, the intercept
is negative and can be labeled as −G, with a positive
G. This value corresponds to the length of thick vertical
line (green on-line) labeled by G. This length is repro-
duced (thin, green on-line) just below the line labeled F .
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FIG. 3: The graph of the slope of a convex function.

Meanwhile, due to the slope of the tangent being s, we
draw a dotted line, the length of which is sx (purple on-
line). From this picture, it is clear that sx = F + G.
In this light, the peculiar definition of the LT, Eqn. (3),
appears appealingly “natural”. Starting from this sym-
metric form, we can easily derive (and appreciate) the
bewildering array of formulae associated with the LT.

To emphasize, the LT G carries the same information
(as F ) on a given system, only that the information is
encoded differently - in s rather than x. We next explore
some of the consequences of the LT.

D. Some mathematical properties of the LT

The geometrical construction and the resulting rela-
tions allow us to display a number of useful and elegant
relations that shed light on the workings of the LT. In
particular, we consider

• The inverse LT

• Extreme values

• Symmetries and derivative relations.

1. The inverse LT

Ordinarily, the inverse of a transformation is distinct
from the transform itself. The LT distinguishes itself in
that it is its own inverse. In this sense, it resembles (ge-
ometric) duality transformations. If we perform the LT
a second time, we recover the original (convex smooth)
function. In other words, suppose we start with the func-
tion, G (s), and ask what is its LT. To be able to do this,
G (s) would have to satisfy our conditions: Is it convex
and is it smooth? In the section on derivatives below, we
see that the answer is yes.
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Let us start with

y (s) =
dG

ds
(5)

and invert the monotonic function y (s) to s (y). Next,
we construct

H(y) = y · s(y)−G(s(y)) , (6)

which can be rewritten as

G = s · y −H .

Comparing this and Eqn. (5) to Eqns. (3,4), we see that
we can identify {H, y} with {F, x}. Thus, the LT of G,
which we have called H, is just F . In other words, the
LT of an LT is our original function and the LT is its own
inverse. This “duality” of the LT is best summarized by
the symmetric form of the LT,

G (s) + F (x) = s · x, (7)

which displays the symmetry between {G, s} and {F, x}
explicitly. We should emphasize that this equation
should be read carefully. In particular, despite its ap-
pearance, there is only one independent variable: either s
or x. These two are related to each other, through either
x (s) = ∂sG (s) or s (x) ≡ ∂xF (x). Thus, a careful writ-
ing of this equation would read either G (s)+F (x (s)) =
s · x (s) or G (s (x)) + F (x) = s (x) · x. Starting from
the first of these, say, and exploiting the chain rule, we
immediately arrive at the “magical” Eqn. (4).

2. Extreme values

Suppose the function F (x) is concave upward (such as
the example in Fig. 3). It then cannot have a maximum
value but it may have a minimum. Assuming it does,
then the minimum is unique. Let us denote this point by

Fmin = F (xmin) .

Of course, the slope of the tangent vanishes here, i.e.,
s (xmin) = 0. If we put this point into our expression
defining the LT (eq. 3), we get the minimum value of F ,
is

Fmin = −G (0) . (8)

Similarly, from the fact that F is the LT of G, we can
conclude that the minimum value of G, is

Gmin = −F (0) . (9)

We can use the symmetric relation eq. 7 to see what
happens for general extrema. Suppose F takes on its
extremal value at xext, which corresponds to a horizontal
tangent, s = 0. We see that

G (0) + F (xext) = 0.

Similarly, G is be at its extremum at sext, where
x (sext) = 0 due to (4), so that

G (sext) + F (0) = 0.

To appreciate the geometric meaning of this equation, we
only need to inspect Fig. 3 and see that the y-intercept
of the tangent to the curve F (x) never reaches beyond
F (0).

3. Symmetry and derivative relationships

Since F and G are LTs of each other, we expect that
a lot of highly symmetrical relations should occur. We
have already seen two:

G (s) + F (x) = s · x

and

∂sG = x and ∂xF = s (10)

From these, we can obtain an infinite set of relationships
between G and F , by regarding the latter as an equa-
tion with s or x as the (independent) variable and taking
derivatives. This leads to some very elegant and inter-
esting relationships.

In this notation, since each function only depends on
one variable, the differentials can be easily identified,
from e.g., dG = (∂sG) ds:

dG = xds and dF = sdx.

Next, we may differentiate expressions (10) again, with
respect to s or x, as appropriate. The result is

∂2
sG =

dx

ds
and ∂2

xF =
ds

dx

But, dx/ds = (ds/dx)−1, so we may write(
∂2

sG
) (

∂2
xF

)
= 1 . (11)

This equation clearly illustrates the importance of (strict)
convexity so that neither factor ever vanishes.

An interesting result is that the local curvatures of the
LT’s are inverses of each other - in a manner reminiscent
of the uncertainty relation ∆x∆k ≈ 1. For simplicity,
suppose F is dimensionless but x is not,[8] so that s has
the dimension of 1/x. With this convention, it is easy to
check the units of Eqns. (7,10,11).

Differentiating (11) again, we can write a symmetric
relationship for the third derivative:

∂3
sG

[∂2
sG]3/2

+
∂3

xF

[∂2
xF ]3/2

= 0 . (12)

Notice that
[
∂3

s

]
=

[
∂2

s

]3/2 so that each term is dimen-
sionless.
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It is possible to arrive at an infinite set of such relations
for higher derivatives, by differentiating further. Such an
exercise also shows that, if F is “smooth” (with say, a well
defined nth derivative), then so is G. Finally, we should
remark that the relationships for higher derivatives do
not have forms as simple as Eqns. (7,10,11,12), but get
more and more complex.

III. SIMPLE EXAMPLES OF THE LT IN
SINGLE-PARTICLE MECHANICS

It is useful to provide some physical examples to illus-
trate these relations.

A. The quadratic function: Non-relativistic kinetic
energy

The simplest example is a quadratic function F (x) =
1
2αx2. For this function, we easily find that s = αx and
x = s/α, leading to G (s) = 1

2αs2. We see immediately
that the curvatures in F and G are inverses of each other
as required by eq. 11. They are simply α and 1

α . All
derivative relations beyond this level are trivial: 0 = 0.

Indeed, the reader will immediately recognize that this
example is the case in CM of a single non-relativistic
particle with mass m moving in an external potential
V (q). There,

x → q̇, F → L, α → m, s → p, G → H (13)

Note that the potential is just a “spectator” in the LT,
since the variable q is not involved. As a result, it flips
its sign when it is put into F (L) and one solves for G
(H) in the symmetric LT relation: F + G = sx.

B. Relativistic kinetic energy

A more interesting case is when we have relativistic
kinetic energy. Here, we go the other way and start with
momentum and generate a velocity as the slope of the
function. The relativistic kinetic energy as a function of
momentum is

H (p) =
√

p2 + m2 (14)

(with c ≡ 1). This is a convex function and its slope at
a point p is

β =
dH

dp
=

p√
p2 + m2

(15)

giving the familiar result

p = mβ
/√

1− β2 . (16)

This leads to the Lagrangian[9]

L (β) = pβ −H (p (β)) = −m
√

1− β2 (17)

This example can also be written in terms of the func-
tion F (x) = cosh(λx). The demonstration is left to the
reader. (Hint: Consult Taylor and Wheeler [10].)

C. Mechanical equilibrium with an externally
applied force

Let us turn to a less familiar example, one that is so
trivial that it does not appear in typical textbooks. Yet
it sets the stage for examining the role of the LT in equi-
librium SM. Consider a particle in a (one-dimensional)
convex potential well, U (x), which has a unique mini-
mum at xmin. A good example would be the particle
attached to a wall by a physical spring, with x being the
distance from the point where the coils of the spring are
fully compressed. The potential would be effectively in-
finite at x = 0, drop down to a minimum at its natural
extension, and then rise for larger x. (We restrict our
attention to positive values of x less than the breaking
point of the spring.) Another example of U is the poten-
tial which binds two atoms into a molecule (though such
U ’s are rarely convex for all separations).

Needless to say, the particle is stationary (“in equilib-
rium”) only if it is at xmin for all time. If it is subjected
to an additional external applied force, f , then it will
reach a new stationary point, x0, which is the solution to
the equation

dU

dx

∣∣∣∣
x0

= f . (18)

To emphasize the dependence of this point on f , we write
x0 (f). We can ask the inverse question: If we want the
particle to settle at x1 6= xmin, what force do we need
to apply? The answer is f (x1), a force that depends
on which x we choose. A little thought leads us to the
explicit functional form: f (x1) = dU/dx|x1

. Of course,
there is nothing special about the subscripts here and we
may just as well write

f (x) =
dU

dx
(19)

and, for the inverse dependence, x (f) instead of x0 (f).
While Eqn. (19) gives f (x) explicitly, we may ask if

there is a counterpart which provides the inverse, x (f),
explicitly. If so, we can simply “plug f into” the ex-
pression and arrive at the new equilibrium position. The
answer is the LT of U , namely,

V (f) = f · x− U (x (f)) .

We leave it to the reader to show that

x (f) =
dV

df
(20)
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is the companion to Eqn. (19).
All the details can be simply worked out in the simple

example of the mass on a spring, U (x) = kx2/2. This
is the analog of the non-relativist kinetic energy LT dis-
cussed in section A. The reader may easily demonstrate
that the LT equation U +V = fx becomes (f−kx)2 = 0,
yielding the relation between f and the new equilibrium
point x.

Note that the information about our system (e.g., wall-
spring-particle complex) is fully contained in either U or
V . the only difference is in the coding. While U is the
usual potential energy associated with putting the par-
ticle at x, V is a kind of potential, associated with the
control f . In ordinary CM, such an approach seems un-
necessarily cumbersome for describing the simple prob-
lems we posed. Thus, it is rightfully ignored in a course
on CM. We include the example here only as a stepping
stone to the LT in SM and thermodynamics. There, mul-
tiple potentials are essential ingredients and appear in
courses regularly. The LT relations proliferate and in in-
creasingly mystifying forms. The next section is devoted
to displaying them in more transparent forms, as well as
to showing the intimate connection between the LT and
the Fourier-Laplace transform.

IV. THE LT IN STATISTICAL
THERMODYNAMICS

In statistical thermodynamics, the LT appears fre-
quently, when different variables are “traded” for their
LT conjugates.[11] Often, one of the variables is easy to
think about while the other is easy to control in real
physical situations.

The difficulty with making sense of the LT in thermo-
dynamics arises from two causes.

• For historic reasons, LT variables are not always
chosen as conjugate pairs.

• Many variables appearing in equilibrium thermody-
namics are not independent, e.g., P, V, T, N, E,etc.
Some are constrained by equations of state, e.g.,
PV = NkBT .

As an example of the first point, the conjugate to the
total energy (E) of a system is the inverse temperature
(β = 1/kBT ). Yet, our daily experience with tempera-
ture (T ) is so pervasive that T tends to be used in most
of the formulae. Thus, the familiar equation

A = E − TS (21)

which relates the Helmholtz free energy (A) to the en-
tropy (S), obscures the symmetry between β and E , as
well as the dimensionless nature of the LT. By contrast,
if we define dimensionless quantities

S ≡ S/kB and A ≡ βA (22)

the duality (symmetry) between them can be beautifully
expressed as

A (β) + S (E) = β · E (23)

To elaborate the second point, we typically encounter a
bewildering array of thermodynamic functions (entropy,
Gibbs and Helmholtz free energies, enthalpy, etc.), a slew
of variables (energy, temperature, volume, pressure, etc.),
as well as a jumble of thermodynamic relations (with
multiple partial derivatives). In general, because of the
multiple constrained independent variables, none of these
examples is as simple as those above, adding to the dif-
ficulty of both teaching and learning this material.

Before turning to a discussion of the generation of the
standard potentials, we show how the LT enters thermo-
dynamics through the door of statistical mechanics, with
the aid of the Laplace transform and the thermodynamic
limit.

A. The foundations of statistical thermodynamics

Equilibrium statistical mechanics is founded on a bold
hypothesis.[11]

For an isolated system, every allowed mi-
crostate (specified by the assignment of ex-
plicit microscopic variables for each particle
leading to a given total energy) is equally
probably. The high probability of finding
a particular equilibrium macrostate(specified
by the assignment of specific macroscopic
variables) is due to a predominance of the
number of microstates corresponding to that
macrostate.

This way of describing a closed, isolated system is
known as the microcanonical ensemble.

The classic example is a gas of N identical, free,[12]
non-relativistic structureless particles, confined in a D-
dimensional box of volume LD. For that system, a mi-
crostate is specified by the 2DN variables corresponding
to the positions and momenta of each particle: {~xi, ~pi},
with i = 1, ..., N . Since the total energy (E) is a constant
for an isolated system, the fundamental hypothesis can
be represented as

P ({~xi, ~pi}) ∝ δ (E −H ({~xi, ~pi})) (24)

where P ({~xi, ~pi}) is the probability of finding the config-
uration of positions and momenta {~xi, ~pi} and H is the
Hamiltonian. In this case, H is explicitly given by

H =
∑

i

h (~xi, ~pi) =
∑

i

[
~p2

i

2m
+ U (~xi)

]
(25)

where m is the mass of each particle and U is the con-
fining potential, which is zero for each component of
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x ∈ [0, L] and infinite otherwise. (The interactions be-
tween the particles can be ignored, by definition of “the
ideal gas.”)

The normalization factor for P is therefore

Ω (E) =
∫

x,p

δ (E −H ({~xi, ~pi})) (26)

where the integral is taken over all {~xi, ~pi} from −∞ to
∞. (The infinite values of U restrict the actual position
integrations to the volume of the box.) We have also
suppressed the other variables that Ω depends on for now:
L and m.

From here, the standard approach evaluates this inte-
gral as follows. The position integral can be done ex-
plicitly, since the only dependence of the Hamiltonian
on position simply confines the position integrals to the
allowed volume. This yields a factor of LND. The mo-
mentum integrals are done by computing the “surface
area” of a sphere in DN dimensions.

The entropy is introduced through the definition S ≡
kB lnΩ. If exploit our “dimensionless entropy,” S, we
simply write

S (E) ≡ lnΩ (E) . (27)

To proceed, we have two choices: the route that empha-
sizes the mathematics or the physics.

1. The route of mathematics

To take this route, our task is straightforward: to eval-
uate integrals with a constraint like Eqn. (26). Needless
to say, such integrals are often not easy to perform. How-
ever, exploiting the Laplace transform often renders the
integrand factorizable. For example, the DN integra-
tions in Eqn. (26) becomes just products of a single in-
tegral. Specifically, we consider the Laplace transform of
Ω (E),

Z (β) ≡
∫

Ω (E) e−βEdE. (28)

Putting in (26) for Ω (E), the delta function permits us
to do the E integral giving

Z (β) =
∫

x,p

e−βH . (29)

Since H is a sum over the individual components, the
integrand factorizes and we have the result:∫

x,p

e−βH =
∫

x,p

∏
i

e−βh(~xi,~pi) (30)

=
[∫

x,p

d~xd~pe−βh(~x,~p)

]N

. (31)

The remaining task is to perform an inverse Laplace
transform, i.e.,

Ω (E) =
∫

C

Z (β) eβEdβ

where C is a contour in the complex β plane (running
parallel to and to the right of the imaginery axis). Defin-
ing

A (β) ≡ − lnZ (β) , (32)

this integral can be cast as

eS(E) =
∫

C

e−A(β)+βEdβ.

To continue further, it is necessary to inject some physics.
In this case, we expect to be dealing with many particles,
i.e., large N . From (31), we have A ∝ N , leading us to
expect that the range of E we would be interested in is
also O(N) (both E and A are “extensive”). The standard
tool to deal with integrands with large exponentials is
the saddle point (or steepest decent) method. Thus, we
seek the saddle point in β, defined by setting the first
derivative of βE −A (β) to zero:

∂β [βE −A]|β0
= 0 . (33)

In other words, we have

∂A

∂β

∣∣∣∣
β0

= E . (34)

Let us emphasize that β0 should be regarded as a function
of E here.

Now, in this approach, the integral in equation (28)
is well approximated by evaluting the integrand at the
saddle point, so that

Ω (E) ∼= exp [β0E −A (β0)] (35)

or using Eqn. (27)

S (E) + A (β0) = β0E (36)

with the understanding that β0 and E are related
through (34). There is nothing significant about the sub-
script on β and this equation is identical to (23) above.
In other words, S and A are LT’s of each other. Thus, we
see that (for situations involving a large parameter, N in
this case) the Laplace (28) and Legendre (36) transforms,
Eqs. (28, 36) respectively, are intimately related to each
other as a result of the thermodynamic limit.

2. The route of physics: interpretation of the equilibrium
condition

The great discovery of thermal physics was the realiza-
tion that matter, by virtue of its temperature, contained
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huge stores of energy.[13] Unfortunately, that energy is
chaotic and non-directional, in contrast to the energies
we are used to in classical mechanics. The critical ques-
tion for extracting usable forms of these hidden energies
is: Under what conditions does the internal energy of
matter move from one object to another and under what
conditions can it be changed to work? Part of the answer
lies in understanding which way the energy will flow if we
bring two very different systems into “thermal contact,”
i.e., allowing only energy to be transfered between the
them. Does it go from the one with more energy to the
one with less? No, not always: Surely, the ocean contains
more energy than a teaspoon of hot water; yet the latter
loses energy when brought into contact with the ocean!
Of course, every child knows the phenomenon: Energy
flows from the hot system to the cold system, until both
have the same temperature. Can this phenomenon be un-
derstood in the framework of the bold hypothesis above?

Now, it is not our purpose here to recreate an entire
statistical thermodynamics text in this brief article. But
considering this question leads us back to the LT.

When two systems (not necessarily of the same size or
energy) are in contact and the combined system isolated,
we obviously have

Etot ≡ E1 + E2

as the control parameter, set to whatever is the “ini-
tial condition” (i.e., when the two are first brought into
contact). Meanwhile, the individual Ej ’s are not fixed,
and we should ask the physics question: Starting at
some initial values, how do they wind up at the final
“equilibrium partition” {E∗

1 , E∗
2}? The answer lies with

Stot (Etot|E1, E2), the entropy of the combined system,
subjected to the partition of energies {E1, E2}, since it
carries the information of how probable a particular par-
tition will be. In general, computing this would be no
trivial task. However, if we focus on systems with exten-
sive entropies, then we may write a good approximation:

Stot = S1 + S2

as well as

S1 = S1 (E1) ; S2 = S2 (E2) .

These are not trivial statements: We are injecting the
physics that, under the conditions specified, the entropies
of each system do not depend on the energy of the other.
(Or at the least, we assume that whatever the depen-
dence is on the interaction between the two systems, it
is so small that it can be neglected.)

Under these assumptions, we can ask: For what par-
tition will Stot be maximum, or equivalently, which par-
tition is the most probable? Writing E2 = Etot − E1

and recalling that Etot is fixed, this task is easy. The
maximum occurs at E∗

1 , where

dStot

dE1

∣∣∣∣
E∗

1

= 0

or

dS1

dE1

∣∣∣∣
E∗

1

=
dS2

dE2

∣∣∣∣
E∗

2

(37)

since dE1 = −dE2. This result is significant, when we
recognize that each side does not depend on the parame-
ters of the other system. Thus, if we associate a quantity
with dS/dE , which we define by

β (E) ≡ dS

dE
,

then Eqn (37) becomes

β1 (E∗
1 ) = β2 (E∗

2 ) .

To put it in words: The most probable partition is when
the β of one system equals the β of the other. How β
is related to our common experience of temperature still
remains to be clarified; but we have found a condition
that can predict the long-time behavior of two systems
when they are brought into thermal contact (i.e., allowed
to exchange energy).

How do we exploit this new variable β? For any given
system, we can write S (E (β)), of course; but is that use-
ful? The answer is intimately connected to the canonical
ensemble, the (Helmholtz) free energy, and the LT of
S. There is no need for us to reproduce here the stan-
dard derivation of this ensemble and the Boltzmann fac-
tor (e−βH) which controls the probability of finding the
system in a microstate associated with Hamiltonian H.
Let us quote the result: The normalization factor here,
Z (β), is the counterpart of Ω (E) for the mircocanonical
ensemble and the associated potential is just the LT of S:
A (β) = βE − S (E (β)). These two thermodynamic po-
tentials (S (E) and A (β)) are entirely analogous to U (x)
and V (f) in the case for a particle in a classical potential,
discussed in section III.C.

B. How does the LT enter into thermodynamics?

For the convenience of the reader, let us summarize the
key relations using dimensionless potentials:

Ω (E) = eS(E); Z (β) = e−A(β) (38)

dS

dE
= β;

dA

dβ
= E (39)

S (E) + A (β) = βE . (40)

We can now see exactly where the LT comes in and
why it is useful. The function that determines the physi-
cal condition is the entropy, S, as a function of the energy,
E. The energy is not easy to control, but the derivative
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of the entropy with respect to the energy (β – essen-
tially the temperature) is more naturally and directly
controlled. We therefore perform a LT of S, to get the
same information coded in the Helmholtz free energy, A,
which is a function of β.

We should also emphasize that, in this context, the
dependent variable in a thermodynamic potential should
be regarded as a control parameter – or as a constraint
variable.

The “slope” associated with each parameter carries sig-
nificant physical information, namely, the response of the
system to this control. The LT simply exchanges the role
of such a pair of variables. In the case considered here,
it is more familiar to think of temperature (or more pre-
cisely, β) as the control (i.e., a thermostat) and the inter-
nal energy of the system as a response. Thus, the free en-
ergy A (β) is the more intuitive potential, with E = ∂βA
being the response. In the transformed version, E is the
control with the entropy S (E) as the potential, a setup
designed for an isolated system. Finally, let us point out
that there are many other examples of response/control
pairs to which the same kind of transformation may be
applied, such as particle number and chemical poten-
tial, polarizability and electric field, or magnetization and
magnetic field.

Of course, in statistical physics, thermodynamic po-
tentials depend on many variables other than just the
total energy E. Each of them should be regarded as a
control parameter or a constraint. Each elicits a distinct
response. As we construct LT’s for each of these con-
trol/response variable pairs, we generate a new potential.
As a result, is a plethora of thermodynamic functions!

To help our students, we should emphasize to that all
of the thermodynamic potentials carry the same infor-
mation, but encoded in different ways, each of which is
for our convenience as investigators of the properties of
system. The next section is devoted to LT of functions
with many variables.

V. LT WITH MANY VARIABLES

LTs can be applied to one or more of the variables of a
multivariable function as well as to single variable func-
tions. This is particularly important in thermodynamics
where there are many linked variables. We begin this
section by discussing briefly the mathematical structure
of the multivariable LT and then apply it to the case of
thermodynamics and SM.

A. General considerations

Suppose our function is a multivariate one:

F (x1, ..., xM ) . (41)

Then, there will be M “slopes”

sm =
∂F

∂xm
≡ ∂mF (42)

and M (M + 1) /2 second derivatives

∂m∂lF (43)

which can be regarded as a symmetric matrix. The con-
vexity restriction amounts to demands that all of the
eigenvalues are positive (or negative). A standard math-
ematical corollary is that the relationship between {xm}
and {sm} is 1-1, so that we can “replace” any xm by
the corresponding sm via a LT. We should remind the
reader that, in the context of thermodynamics, convex-
ity is the condition for stability in equilibrium systems.
Put succinctly: No “eigen” response can be negative.[14]

Since we can transform any number of (up to M) the
x’s, we will have a total of 2M functions! For example, if
we restrict ourselves of (E, V ) - the standard variables for
the microcanonical ensemble of the ideal gas - there are
four thermodynamic functions: entropy, enthalpy, Gibbs
and Helmholtz free energies.

One way to picture the relationship between so many
functions is to put them at the corners of an M -
dimensional hypercube. Each axis in this space is associ-
ated, of course, with a particular variable pair (xm, sm).
Going from one corner to an adjacent corner along a
particular edge correspond to carrying out the LT for
that associated pair. For the M = 2 example above,
the hypercube reduces to a square, which is related, but
not identical, to the square that appears in some stan-
dard texts.[11][15] Thanks to the commutativity of par-
tial derivatives, to go from any corner to any other is
a path independent process, so that the function associ-
ated with each vertex is unique. Thus, e.g., exchanging
(x`, xm) for (s`, sm), the LT relations would be the simple
generalization of (7)

s`x` + smxm = G (x1, ...s`, ...sm, ...xM )
+F (x1, ...x`, ...xm, ...xM ) (44)

with [16]

∂`G = x`; ∂mG = xm (45)
∂`F = s`; ∂mF = sm . (46)

To be clear, we should have given this G some special
notation, to denote that its variables are all {x} except
for the two that are s’s. One possibility is G`,m, but
for the sake of simplicity, we do not pursue this issue
further. However, one special LT is worth a note - the
one in which all variables are s’s. Denoting this function
by H, we see that it lies at the corner of the hypercube
diametrically opposed to F . For these, the LT relation
reads

H (~s) + F (~x) = ~s · ~x (47)
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where the vector notation for the variables should be ob-
vious.

Generalizations for higher derivatives proceed in a sim-
ilar way. For example, (11) becomes∑

m

(∂`∂mH) (∂m∂nF ) = δ`n

where δ is the unit matrix. Clearly, convexity of F guar-
antees that the inverse of ∂m∂nF exists.

B. Example in the context of thermodynamics

Let us provide an example by applying these consid-
erations to thermodynamics of a gas. Beginning with
the microcanonical partition function Ω (E, V ). Thus,
we consider the ”mapping”

F (x1, x2) → S (E, V ) ≡ lnΩ, (48)

with

x1 → E, x2 → V, s1 → β, s2 → p̃

Here, we choose the variable to be

p̃ ≡ βP.

This choice comes from the traditional definition of pres-
sure: P = T (∂S/∂V ) with E held fixed.

Carrying out the LT with respect to x1 leads to the
Helmholtz free energy. Our symmetric and dimensionless
version of A = E − TS is (eqn. 23 above)

A (β, V ) + S (E, V ) = βE.

Taking the LT with respect to x2 as well, we arrive at
the Gibbs free energy: G (T, P ) (not be confused with
the G’s, the generic LT of the F ’s). Our version is

G (β, p̃) + S (β, V ) = βE + p̃V (49)

where

G ≡ βG

Rewriting (49), we see its more common manifestation:

G = E − TS + PV.

From our perspective, it is the placing of S and the use of
T (instead of β) that leads to the seemingly mysterious
signs on the right.

To end this subsection, we should comment on the
enthalpy, which commonly appears alongside the other
three potentials. For various reasons (history and/or con-
venience), S instead of E is chosen as the independent
variable. As a result, instead of β, the natural conjugate
variable is T (= ∂E/∂S). Regarding S as a control vari-
able with which to access E is clearly conceptually diffi-
cult. However, it is common to think of transfering heat

out-of or into a system, so that TdS appears on the scene
as the means of “control.” Taking the LT of E (S) in the
standard fashion, we would arrive at TS−E, which is the
Helmholtz free energy, except for a sign. The disadvan-
tage is clear, but there are advantages to this approach.
In particular, by starting with E (S, V ), we naturally ar-
rive at the ordinary pressure, −P , as the conjugate to
V (instead of p̃). Note the extra minus sign here! Tak-
ing the LT with respect to V from E (S, V ), we arrive at
(−P )V − E. This is the enthalpy: H = E + PV , but
again with an extra minus sign.

Needless to say, we may continue on to add other
variables, the standard example being N and the grand
canonical ensemble.

VI. SUMMARY AND CONCLUDING
REMARKS

In this article we have presented an analysis of the
LT from both mathematical and physical points of view.
Mathematically, we analyze how the LT arises from the
goal of conveniently expressing the information contained
in a convex function in terms of its derivative as an inde-
pendent variable and relate the familiar algebraic expres-
sions to less familiar geometry. We point out an elegant
(and easy to remember) symmetry relation that allows
the direct reconstruction of all of the critical results and,
as a bonus, makes it obvious that the LT is its own in-
verse. Physically, we have motivated the LT and as fa-
cilitating a way of thinking about a complex problem in
terms of a more naturally controllable independent vari-
able. We present examples from classical and statistical
mechanics. Our dimensionless form for the LT motivates
and helps untangle the snarl of thermodynamic poten-
tials and the confusing relations among them.

There remain two issues that we promised to discuss.
For simplicity, we focused on the LT of smooth convex
functions. Also due to space limitions, we did not touch
upon many generalizations of the LT. Let us conclude
by acknowleding just two important issues: the LT of
non-convex functions and LT in domains with non-trivial
topology, such as the angle on a circle.

When a function is non-convex the LT becomes multi-
valued or develops discontinuous first derivatives. The
topic is intimately related to first order phase transitions
and the Maxwell construction.

A second generalization concerns variables the domains
of which have non-trivial topology, the simplest being
functions defined on a circle or the surface of a sphere.
The angles are the most natural variables here, but we
must be mindful of the periodic nature of φ ∈ (0, 2π]
and the co-ordinate singularities at the poles: θ = 0, π.
A concrete and rich example is the shape of crystals in
equilibrium with its liquid (e.g., 4He crystals, in coexis-
tence with the superfluid [18]) or vapour (e.g., gold crys-
tals [19]). Neither crystal shapes are spherical and can be
described by a non-trivial function R (θ, φ), which spec-
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ifies the distance from the center of mass to a point on
the crystal surface labeled by (θ, φ). The tangent plane
at that point can be labeled by the direction of its nor-
mal, labeled by

(
θ̃, φ̃

)
. The relationship between these

and the derivatives ∂θR and ∂φR clearly exists, but is far
from simple. From that, a (generalized) LT of R can be
constructed: σ

(
θ̃, φ̃

)
. It turns out that σ is also a signif-

icant physical quantity: it is the free energy per unit area
(surface tension) associated with a planar interface, with
normal

(
θ̃, φ̃

)
, between the crytaline and the isotropic

phases of the material. An additional bonus here is that,
unlike typical thermodynamic potentials like entropy and
free energies, the “potential” R (θ, φ) is not just an ab-
stract concept; it is manifestly visualizable, being dis-
played explicitly as a shape in 3-D! The interested reader

can find details of this intriguing connection in refs. [17].
In conclusion, we note that our approach to LT ap-

pears to us to be simpler, better motivated, and more
easily connected to physical motivation than the tradi-
tional. Our sense from teaching the topic is that stu-
dents often find it confusing and unnatural. It would be
of considerable interest to carry out research into stu-
dent understanding of the LT in physics and to explore
whether our approach could improve the situation.
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